Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

How to make contested decisions about time and risk

Simon Dietz* and Anca N. Matei[†]

*London School of Economics and [†]European Commission, Joint Research Centre Institute for Prospective Technological Studies (JRC-IPTS), Seville

Global IQ, Brussels, June 2014

Space for
agreement
on climate
change?
change.
Dietz &
Matei
ntroduction
Application
o climate
nange

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Applicatior to climate change

Conclusions

 Economic evaluation of climate policy has become mired in a debate about appropriate time and risk preferences

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Applicatior to climate change

Conclusions

 Economic evaluation of climate policy has become mired in a debate about appropriate time and risk preferences

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

e.g. 'Stern versus Nordhaus'

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- Economic evaluation of climate policy has become mired in a debate about appropriate time and risk preferences
 - e.g. 'Stern versus Nordhaus'
- There is no immediate prospect of universal agreement on the specification of time and risk preferences

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- Economic evaluation of climate policy has become mired in a debate about appropriate time and risk preferences
 - e.g. 'Stern versus Nordhaus'
- There is no immediate prospect of universal agreement on the specification of time and risk preferences
 - $\blacksquare \approx$ incomplete information about the discount and utility functions

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- Economic evaluation of climate policy has become mired in a debate about appropriate time and risk preferences
 - e.g. 'Stern versus Nordhaus'
- There is no immediate prospect of universal agreement on the specification of time and risk preferences
 - $\blacksquare \approx$ incomplete information about the discount and utility functions

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Could we nonetheless still find spaces for agreement on which investment to choose?

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- Economic evaluation of climate policy has become mired in a debate about appropriate time and risk preferences
 - e.g. 'Stern versus Nordhaus'
- There is no immediate prospect of universal agreement on the specification of time and risk preferences
 - $\blacksquare \approx$ incomplete information about the discount and utility functions
- Could we nonetheless still find spaces for agreement on which investment to choose?
 - Assuming agreement only extends to partially specifying time and risk preferences, spaces for agreement = partial orderings

Sp	ace	for
agi	reen	n en '
on	clin	nate
c	nang	ge?

Dietz & Matei

Introduction

Theory

Applicatior to climate change

Conclusions

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Applicatior to climate change

Conclusions

Some of the theoretical machinery we require already exists

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Applicatior to climate change

Conclusions

- Some of the theoretical machinery we require already exists
 - Stochastic Dominance (Fishburn, 1964,...) and 'Almost' Stochastic Dominance (Leshno and Levy, 2002, and Tzeng et al., 2012, in Mgt. Sci.)

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Applicatior to climate change

Conclusions

- Some of the theoretical machinery we require already exists
 - Stochastic Dominance (Fishburn, 1964,...) and 'Almost' Stochastic Dominance (Leshno and Levy, 2002, and Tzeng et al., 2012, in *Mgt. Sci.*)
 - Time Dominance (Bøhren and Hansen, 1980 in Scand. J. Econ.; Ekern, 1981, in J. Finance)

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- Some of the theoretical machinery we require already exists
 - Stochastic Dominance (Fishburn, 1964,...) and 'Almost' Stochastic Dominance (Leshno and Levy, 2002, and Tzeng et al., 2012, in *Mgt. Sci.*)
 - Time Dominance (Bøhren and Hansen, 1980 in Scand. J. Econ.; Ekern, 1981, in J. Finance)

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

But...

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- Some of the theoretical machinery we require already exists
 - Stochastic Dominance (Fishburn, 1964,...) and 'Almost' Stochastic Dominance (Leshno and Levy, 2002, and Tzeng et al., 2012, in *Mgt. Sci.*)
 - Time Dominance (Bøhren and Hansen, 1980 in Scand. J. Econ.; Ekern, 1981, in J. Finance)

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

- But...
 - ...Stochastic Dominance is essentially an a-temporal framework

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- Some of the theoretical machinery we require already exists
 - Stochastic Dominance (Fishburn, 1964,...) and 'Almost' Stochastic Dominance (Leshno and Levy, 2002, and Tzeng et al., 2012, in *Mgt. Sci.*)
 - Time Dominance (Bøhren and Hansen, 1980 in Scand. J. Econ.; Ekern, 1981, in J. Finance)
- But...
 - ...Stochastic Dominance is essentially an a-temporal framework
 - Time Dominance considers cashflows that are known with certainty

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- Some of the theoretical machinery we require already exists
 - Stochastic Dominance (Fishburn, 1964,...) and 'Almost' Stochastic Dominance (Leshno and Levy, 2002, and Tzeng et al., 2012, in *Mgt. Sci.*)
 - Time Dominance (Bøhren and Hansen, 1980 in Scand. J. Econ.; Ekern, 1981, in J. Finance)
- But...
 - ...Stochastic Dominance is essentially an a-temporal framework
 - Time Dominance considers cashflows that are known with certainty

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

 Therefore the conceptual task is to unify the approaches, yielding a theory of *Time-Stochastic Dominance (TSD)*

Sp	ace	for
agi	reen	n en '
on	clin	nate
c	nang	ge?

Dietz & Matei

Introduction

Theory

Applicatior to climate change

Conclusions

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Applicatior to climate change

Conclusions

 We compare trajectories for global greenhouse gas emissions

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- We compare trajectories for global greenhouse gas emissions
 - Our policies limit the atmospheric stock of CO₂ to various levels, plus 'business as usual'

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Applicatior to climate change

Conclusions

- We compare trajectories for global greenhouse gas emissions
 - Our policies limit the atmospheric stock of CO₂ to various levels, plus 'business as usual'

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

 We use a version of the DICE integrated assessment model (Nordhaus) to estimate the effect of these policies on consumption

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Applicatior to climate change

Conclusions

- We compare trajectories for global greenhouse gas emissions
 - Our policies limit the atmospheric stock of CO₂ to various levels, plus 'business as usual'
- We use a version of the DICE integrated assessment model (Nordhaus) to estimate the effect of these policies on consumption
 - Unlike standard DICE our version is stochastic, with eight random parameters

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

- Applicatior to climate change
- Conclusions

- We compare trajectories for global greenhouse gas emissions
 - Our policies limit the atmospheric stock of CO₂ to various levels, plus 'business as usual'
- We use a version of the DICE integrated assessment model (Nordhaus) to estimate the effect of these policies on consumption
 - Unlike standard DICE our version is stochastic, with eight random parameters
- While we are unable to find standard time-stochastic dominance in the data, we find that the toughest emissions targets 'almost' dominate their weaker counterparts

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

- Applicatior to climate change
- Conclusions

- We compare trajectories for global greenhouse gas emissions
 - Our policies limit the atmospheric stock of CO₂ to various levels, plus 'business as usual'
- We use a version of the DICE integrated assessment model (Nordhaus) to estimate the effect of these policies on consumption
 - Unlike standard DICE our version is stochastic, with eight random parameters
- While we are unable to find standard time-stochastic dominance in the data, we find that the toughest emissions targets 'almost' dominate their weaker counterparts
 - We can say that only those with 'extreme' preferences would not opt to cut emissions by a large amount

	Spaces for agreement
Space for agreement on climate change? Dietz & Matei	
Introduction Theory	

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

 In the standard economic model of welfare, time preferences are encoded by a discount function v(t) ∈ V_i, while risk preferences are encoded by a utility function u(x) ∈ U_j

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- In the standard economic model of welfare, time preferences are encoded by a discount function v(t) ∈ V_i, while risk preferences are encoded by a utility function u(x) ∈ U_j
- A space for agreement is a combination of V_i × U_j for which one policy dominates another, i.e. anyone with preferences in this class would prefer the one to the other

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- In the standard economic model of welfare, time preferences are encoded by a discount function v(t) ∈ V_i, while risk preferences are encoded by a utility function u(x) ∈ U_j
- A space for agreement is a combination of V_i × U_j for which one policy dominates another, i.e. anyone with preferences in this class would prefer the one to the other

 $U_1\equiv$ all non-decreasing utility functions

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- In the standard economic model of welfare, time preferences are encoded by a discount function v(t) ∈ V_i, while risk preferences are encoded by a utility function u(x) ∈ U_j
- A space for agreement is a combination of V_i × U_j for which one policy dominates another, i.e. anyone with preferences in this class would prefer the one to the other

 $U_1\equiv$ all non-decreasing utility functions

 $U_2 \equiv$ all functions in U_1 that also exhibit risk neutrality/aversion

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- In the standard economic model of welfare, time preferences are encoded by a discount function v(t) ∈ V_i, while risk preferences are encoded by a utility function u(x) ∈ U_j
- A space for agreement is a combination of V_i × U_j for which one policy dominates another, i.e. anyone with preferences in this class would prefer the one to the other

 $U_1\equiv$ all non-decreasing utility functions

 $U_2\equiv$ all functions in U_1 that also exhibit risk neutrality/aversion

 $V_1 \equiv$ any positive discounting of utility

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Applicatior to climate change

Conclusions

- In the standard economic model of welfare, time preferences are encoded by a discount function v(t) ∈ V_i, while risk preferences are encoded by a utility function u(x) ∈ U_j
- A space for agreement is a combination of V_i × U_j for which one policy dominates another, i.e. anyone with preferences in this class would prefer the one to the other

 $U_1\equiv$ all non-decreasing utility functions

 $U_2 \equiv$ all functions in U_1 that also exhibit risk neutrality/aversion

 $V_1\equiv$ any positive discounting of utility

 $V_2\equiv$ all functions in V_1 that decrease at a decreasing rate

~ ~
Space for
agreement
on climate
change?
change:
Dietz &
Matei
ntroduction
heory
pplication
nange

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

 We seek to establish dominance relations by looking at differences between cumulative distributions

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

 We seek to establish dominance relations by looking at differences between cumulative distributions

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

■ In Stochastic Dominance these are *cdfs*, i.e. $D^{j}(z) = G^{j}(y) - F^{j}(x)$

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- We seek to establish dominance relations by looking at differences between cumulative distributions
 - In Stochastic Dominance these are *cdfs*, i.e. $D^{j}(z) = G^{j}(y) F^{j}(x)$
 - In Time Dominance these are cumulative cashflows, i.e. $Z_i(t) = X_i(t) Y_i(t)$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Applicatior to climate change

Conclusions

- We seek to establish dominance relations by looking at differences between cumulative distributions
 - In Stochastic Dominance these are *cdfs*, i.e. $D^{j}(z) = G^{j}(y) F^{j}(x)$
 - In Time Dominance these are cumulative cashflows, i.e. $Z_i(t) = X_i(t) Y_i(t)$
 - In Time-Stochastic Dominance these are *cdfs* of cashflows, i.e. $D_i^j(z, t) = G_i^j(y, t) - F_i^j(x, t)$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Applicatior to climate change

Conclusions

- We seek to establish dominance relations by looking at differences between cumulative distributions
 - In Stochastic Dominance these are *cdfs*, i.e. $D^{j}(z) = G^{j}(y) F^{j}(x)$
 - In Time Dominance these are cumulative cashflows, i.e. $Z_i(t) = X_i(t) Y_i(t)$
 - In Time-Stochastic Dominance these are *cdfs* of cashflows, i.e. $D_i^j(z,t) = G_i^j(y,t) F_i^j(x,t)$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

The order of dominance is the number of times the distribution is cumulated/integrated

Space for
agreement
on climate
change?

Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Applicatior to climate change

Conclusions

• The trouble is dominance can be very hard to demonstrate

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- The trouble is dominance can be very hard to demonstrate
- A classic example is that (simple, i.e. a-temporal) stochastic dominance cannot rank the following alternatives

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Applicatior to climate change

Conclusions

- The trouble is dominance can be very hard to demonstrate
- A classic example is that (simple, i.e. a-temporal) stochastic dominance cannot rank the following alternatives
 - F pays out \$0.5 with probability 0.01 and \$1 million with probability 0.99

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

2 G pays out \$1 for sure

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- The trouble is dominance can be very hard to demonstrate
- A classic example is that (simple, i.e. a-temporal) stochastic dominance cannot rank the following alternatives
 - F pays out \$0.5 with probability 0.01 and \$1 million with probability 0.99

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

2 G pays out \$1 for sure

• Why?
$$D^{j}(z) = G^{j}(y) - F^{j}(x) < 0, \ \forall j, \ x, y \in [0.5, 1)$$

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Applicatior to climate change

Conclusions

- The trouble is dominance can be very hard to demonstrate
- A classic example is that (simple, i.e. a-temporal) stochastic dominance cannot rank the following alternatives
 - F pays out \$0.5 with probability 0.01 and \$1 million with probability 0.99
 - 2 G pays out \$1 for sure
- Why? $D^{j}(z) = G^{j}(y) F^{j}(x) < 0, \ \forall j, \ x, y \in [0.5, 1)$
- Intuition: broad classes of preferences include extreme risk aversion

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Space for
agreement
on climate
change?

Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Applicatior to climate change

Conclusions

 To deal with this we extend the approach of 'Almost' Stochastic Dominance

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

 To deal with this we extend the approach of 'Almost' Stochastic Dominance

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

According to this approach:

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Applicatior to climate change

Conclusions

- To deal with this we extend the approach of 'Almost' Stochastic Dominance
- According to this approach:
 - Measure the area/volume of violation of dominance, relative to the total area/volume between the distributions

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- To deal with this we extend the approach of 'Almost' Stochastic Dominance
- According to this approach:
 - Measure the area/volume of violation of dominance, relative to the total area/volume between the distributions

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

 Link this violation measure with a restriction on preferences, i.e. functions admissible in V_i × U_i

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Applicatior to climate change

Conclusions

- To deal with this we extend the approach of 'Almost' Stochastic Dominance
- According to this approach:
 - Measure the area/volume of violation of dominance, relative to the total area/volume between the distributions

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

- Link this violation measure with a restriction on preferences, i.e. functions admissible in V_i × U_i
- Violation is between 0 and 0.5

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- To deal with this we extend the approach of 'Almost' Stochastic Dominance
- According to this approach:
 - Measure the area/volume of violation of dominance, relative to the total area/volume between the distributions
 - Link this violation measure with a restriction on preferences, i.e. functions admissible in V_i × U_j
- Violation is between 0 and 0.5
 - Close to zero: small violation and few functions are thrown out, hence large space for agreement

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- To deal with this we extend the approach of 'Almost' Stochastic Dominance
- According to this approach:
 - Measure the area/volume of violation of dominance, relative to the total area/volume between the distributions
 - Link this violation measure with a restriction on preferences, i.e. functions admissible in V_i × U_j
- Violation is between 0 and 0.5
 - Close to zero: small violation and few functions are thrown out, hence large space for agreement

(ロ) (型) (E) (E) (E) (O)

 Close to 0.5: large violation and many functions are thrown out, hence small space for agreement

Po	licies	to	be	eva	uated

<i>c c</i>
Space for
agreement
on climate
change?
Dietz &
Matai
Water
Introduction
Theory
Application
to elimete
to climate
change

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆○◆

Policies to be evaluated

	Results, 1TSD
Space for agreement on climate change?	
Matei	
Theory	
Application to climate change	
C on clusion s	

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

(ロ) (部) (E) (E) (E) (の)

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < (

<u> </u>
Space to
agreemen
on climat
change?
sugar Ber
Dist 7 8
IVIatei
introductio
Theory
Application
Apprication
to climate
change
Conclusion

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

CO ₂	γ_1	ε_{1T}	γ_2	ε ₂ τ	λ_{1b}
limit (ppm)					
650	0.00009	0.00003	0.00002	8E-07	0
600	0.00045	0.00003	0.00045	2E-06	6.01E-08
550	0.00092	0.00003	0.00231	2E-06	0.00014
500	0.00188	0.00004	0.00605	3E-06	0.00086
450	0.00388	0.00004	0.01363	4E-06	0.00245

ヘロト ヘロト ヘヨト ヘヨト

€ 9Q@

c (
Space for
agreement
on climate
change?
sinange.
Dista &
IVIatei
introduction
Th
Theory
Annitantian
Application
to climate
change
Conclusions

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

CO ₂ limit (ppm)	650		600		550		500	
	γ_1	ε_{1T}	γ_1	ε_{1T}	γ_1	ε_{1T}	γ_1	ε_{1T}
600	0.00255	0.00012						
550	0.00351	0.00011	0.01054	0.00034				
500	0.00517	0.00011	0.01260	0.00032	0.01764	0.00050		
450	0.00859	0.00013	0.01870	0.00036	0.02480	0.00052	0.03701	0.00107

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Space for
agreement
agreement.
on climate
change?
, end and a second s
Matei
Ineory
Application
change
Conclusions

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

• We do not find standard TSD between any of our policies

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- We do not find standard TSD between any of our policies
- We look instead for Almost TSD, and find it, i.e. we find very small violations of strict TSD

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- We do not find standard TSD between any of our policies
- We look instead for Almost TSD, and find it, i.e. we find very small violations of strict TSD
- We can give the violations an interpretation in terms of the decision-maker's utility and discount functions

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- We do not find standard TSD between any of our policies
- We look instead for Almost TSD, and find it, i.e. we find very small violations of strict TSD
- We can give the violations an interpretation in terms of the decision-maker's utility and discount functions
 - We use this to argue that only those with 'extreme' preferences would prefer weaker to tougher emissions targets in our set

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Space for agreement on climate change?

> Dietz & Matei

Introduction

Theory

Application to climate change

Conclusions

- We do not find standard TSD between any of our policies
- We look instead for Almost TSD, and find it, i.e. we find very small violations of strict TSD
- We can give the violations an interpretation in terms of the decision-maker's utility and discount functions
 - We use this to argue that only those with 'extreme' preferences would prefer weaker to tougher emissions targets in our set
 - Another way of looking at this is that the debate about time and risk preferences may not be so important after all