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Abstract

Changes in agricultural land use have important implications for environmental services. Previous studies of agricultural land-use futures have
been published indicating large uncertainty due to different model assumptions and methodologies. In this article we present a first comprehensive
comparison of global agro-economic models that have harmonized drivers of population, GDP, and biophysical yields. The comparison allows us
to ask two research questions: (1) How much cropland will be used under different socioeconomic and climate change scenarios? (2) How can
differences in model results be explained? The comparison includes four partial and six general equilibrium models that differ in how they model
land supply and amount of potentially available land. We analyze results of two different socioeconomic scenarios and three climate scenarios (one
with constant climate). Most models (7 out of 10) project an increase of cropland of 10–25% by 2050 compared to 2005 (under constant climate),
but one model projects a decrease. Pasture land expands in some models, which increase the treat on natural vegetation further. Across all models
most of the cropland expansion takes place in South America and sub-Saharan Africa. In general, the strongest differences in model results are
related to differences in the costs of land expansion, the endogenous productivity responses, and the assumptions about potential cropland.

JEL classifications: C61, C68, Q11, Q54

Keywords: Land-use change; Model intercomparison; Land-use models; Land expansion

∗Corresponding author. Tel.: +0049-331-288-2653, fax: +49-331-288-2600.
E-mail address: schmitz@pik-potsdam.de (C. Schmitz).

Data Appendix Available Online

A data appendix to replicate main results is available in the online version of
this article.

1. Introduction

Land use and surface cover is determined to a large extent
by human intervention, primarily through conversion for crop
cultivation (Vitousek et al., 1997). Cropland expansion was
the main source of growth of agricultural production through-
out pre-industrial history. However, since the middle of the

C© 2013 International Association of Agricultural Economists DOI: 10.1111/agec.12090
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20th century, intensification with land-saving technologies has
been the main engine of growth globally (van Meijl and van
Tongeren, 1999; Wik et al., 2008). Between 1955 and 2005,
arable land increased by around 15% (HYDE; Klein Goldewijk
et al., 2011) whereas agricultural production rose by more than
200% (FAO, 2013). In the future, it is unclear how total crop-
land will respond to the anticipated increase in demand for
agricultural products. The question has implications not only
for food security, but also for biodiversity, terrestrial carbon
stocks, and other ecosystem services (Gorenflo and Brandon,
2005; Houghton, 2003).

Land use was traditionally not a focal area for research in
global economic modeling. In the last couple of decades, how-
ever, it has evolved as a new research field. New spatially ex-
plicit models of land use have been developed, with a focus on
the agricultural and forestry sectors as the main users of land,
and modeling teams have explicitly introduced global land use
into existing computable general equilibrium (CGE) and partial
equilibrium (PE) models. These efforts are still in their infancy
with large uncertainty about future land use. Models used in the
IPCC fourth assessment report (AR4) project cropland changes
from −18 to +69% by 2050 relative to 2000 (−123 to +1158
million hectares [ha]) and forest land changes range from −18
to +3% (−680 to +94 million ha) by 2050 (Metz et al., 2007).
Much of this huge range among models is related to the un-
certainties in economic and demographic development. FAO
projects an increase of cropland between 2005 and 2050 of 69
million ha (Alexandratos and Bruinsma, 2012) and the Inter-
national Assessment of Agricultural Knowledge, Science and
Technology for Development (IAASTD) around 180 million ha
(van Vuuren et al., 2009). Within the U.K. Foresight Project,
Smith et al. (2010) provided a review of studies on land-use
projections of the past two decades, indicating a range between
90 and 470 million ha. They concluded that uncertainty about
future land use is large and mainly associated with the use
of different input data and assumptions about future economic
and demographic development. Popp et al. (2013) show that
the land-use modules of three Integrated Assessment Models
project very different global land cover conversion futures due
to strong differences in their assumptions and definitions of land
cover distribution in 2005 and structural features of the models.

In this article, we go a step further by harmonizing key input
data and assumptions across different models. Up to now, this
has only been done on a small scale with a few models (e.g.,
Stehfest et al., 2013). For our purpose, we used the first compre-
hensive model intercomparison in the field of agro-economic
models organized within the AgMIP consortium.1 It includes
four partial and six general equilibrium models, all of which
differ in the amount of potential land and in the way how they
model land supply. In this article we use the model scenarios
to answer two research questions. One, how much cropland
will be used in 2050 under different socioeconomic and climate
change scenarios? And two, how do methods to model land

1 AgMIP: Agricultural Model Inter-comparison Project (www.agmip.org).

supply and land expansion differ across models and how do
methods differences explain differences in results?

2. Models and scenarios

2.1. Model approaches and differences

The comparison includes four partial (PE) and six general
equilibrium models (GE). Two PE models, MAgPIE (Lotze-
Campen et al., 2008; Popp et al., 2010; Schmitz et al., 2012)
and GLOBIOM (Havlik et al., 2011, 2013) incorporate spa-
tially explicit land use as part of the model solution. The other
two PE models, GCAM (Thompson et al., 2011; Wise and
Calvin, 2011) and IMPACT (Rosegrant et al., 2012), link to
grid-based models. The six CGE models are all based on the
GTAP database. The AIM (Fujimori et al., 2012), FARM (Sands
et al., 2013, 2014), and GTEM (Pant, 2007) models determine
land use based on agro-ecological zones (AEZs; FAO, 1996).
ENVISAGE (van der Mensbrugghe, 2013) and MAGNET (van
Meijl et al., 2006) model land use at the national level with
inputs from the grid-specific IMAGE model (Bouwman et al.,
2006). EPPA (Melillo et al., 2009) is coupled with TEM (Felzer
et al., 2004) to model future land use. The models differ sub-
stantially in how they model land supply and the amount of
potential land. Table 1 gives an overview of key parameters
for the modeling of land use and especially cropland expansion
and how they are implemented in the different models. Table 2
provides information on the land types and how they are imple-
mented. More details on the models can be found in the Data
Appendix and in von Lampe et al. (2014).

Although the models are classified into two broad types (gen-
eral or PE), there is still considerable heterogeneity within
the two groups (more so within PE than within GE mod-
els). In the following, those differences are presented along
with several key features (see also Hertel et al., 2009). Those
include:

� Spatial dimension and data sources
� Mobility of land across uses
� Accessing new lands
� Forest and bioenergy sector
� Technological change

2.1.1. Spatial dimension and data sources
The spatial dimension is crucial in agro-economic model-

ing of land use. Several global land data bases have become
available recently. For instance, Klein Goldewijk et al. (2011)
provide data on historical land use with a 5 arc minute res-
olution, Ramankutty et al. (2008) do so for the year 2000.
Monfreda et al. (2008) provide harvested area and yields. The
SPAM (Spatial Production Allocation Model) data set uses
an entropy approach to allocate national and regional produc-
tion statistics over higher resolution space based on various
suitability measures (You and Wood, 2006). The PE models
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Table 1
Key parameters for modeling land use

Data Method

Model
Model
type

Land-use
types†

Spatial dimension
(number of units) Land use

Potential cropland
expansion Crop allocation Cropland expansion

Bioenergy
assumptions

AIM CGE 6 AEZ GTAP, FAO,
IMAGE

GTAP AEZ nested logit Within nested logit 1st + 2nd
generation

ENVISAGE CGE 2 National (114) GTAP FAO CET function Land supply curve†† No
EPPA CGE 5 National (114) GTAP / TEM§ TEM – Conversion costs 1st generation
FARM CGE 3 AEZ GTAP GTAP AEZ landrent/ market

clearing
competition with

pasture + forest
No

GCAM PE 8 AEZ GTAP, FAO,
HYDE

GTAP AEZ nested logit Within nested logit 1st + 2nd
generation

GLOBIOM PE 7 SimU‡ (200,000) GLC2000, FAO,
SPAM

EPIC Land rent
/profitability

Conversion costs +
land rent

1st + 2nd
generation

GTEM CGE 2 National (114) GTAP Based on historic
expansion

CET function Within CET No

IMPACT PE 2 FPU’s¶(251) FAO, SPAM Expert opinion‡‡ Price elast. Exogenously given 1st generation
MAGNET CGE 3 National (114) GTAP, FAO,

IMAGE
IMAGE CET function Land supply curve†† 1st generation

MAgPIE PE 3 (5) 0.5◦-grid (59,199) Own data base Own data base Land rent Conversion costs 1st generation

Notes: †Only land types that are able to change over time (please see also Table 2).
‡Clusters of 5 arc minute pixels belonging to the same slope, soil, and altitude class, to the same country, and to the same 30 arc minute pixel.
§Terrestrial Ecosystem Model (Felzer et al., 2004).
¶FPU (food production unit) is a river basin with the political boundary of a region.
††Total agricultural land (crop and pasture land).
‡‡Through Delphi methods.

Table 2
Land types represented in the different models (dynamic means that the land can change over time, static means the amount of land stays constant and “-” means that
the land category is not existent in the model)

Model Cropland Pasture Managed forest Un-managed forest Other natural vegetation Urban

AIM dynamic dynamic dynamic dynamic dynamic –
ENVISAGE dynamic dynamic – – – –
EPPA dynamic dynamic dynamic dynamic dynamic –
FARM dynamic dynamic dynamic static – –
GCAM dynamic dynamic dynamic dynamic dynamic static
GLOBIOM† dynamic dynamic dynamic dynamic dynamic static
GTEM dynamic dynamic – – – –
IMPACT¶ dynamic – – – – –
MAGNET dynamic dynamic static‡ static‡ static‡ static‡
MAgPIE dynamic static§ static§ dynamic dynamic static

Notes: †Short rotation plantations as a separate land category.
‡These land-use types can be defined within or outside the land supply curve dependent on whether they can be transformed into agricultural land. Shifts are
determined within IMAGE model.
§These dynamic land types in MAgPIE have been under revision for the time of the comparison and, therefore, have been put to static for this exercise.
¶IMPACT differentiate between agricultural and nonagricultural land.

GLOBIOM and MAgPIE, are constructed as grid-specific
optimization models and can make use of those disaggregated
data. The data for MAgPIE are taken from a consistent land-
use database developed by Krause et al. (2009), which is based
on Erb et al. (2007) and integrates crop suitability indicators
(van Velthuizen et al., 2007), intact and frontier forest types
(Bryant et al., 1997; Potapov et al., 2008), and protected areas
(UNEP-WCMC, 2006). The GLOBIOM spatial modeling is
based on the concept of Homogeneous Response Units (HRU)
delineated by geographically clustering 5 arc minute pixels ac-
cording to only those parameters of the landscape—elevation,

slope, and soil—that generally do not change over time and
are thus invariant with respect to land use and management
or climate change. At the global scale, GLOBIOM includes
five altitude classes, seven slope classes, and five soil classes.
In a second step, the HRU layer is intersected with a 0.5◦ ×
0.5◦ grid and country boundaries to delineate simulation units
(SimU; Skalský et al., 2008). For each SimU a number of crop-
land management options are simulated using the biophysical
process model EPIC (Environmental Policy Integrated Climate
Model; Izaurralde et al., 2006). Initial land cover and land-use
distribution is based mainly on GLC2000 and harmonized when
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necessary to match with FAO and the crop distribution map of
SPAM (You and Wood, 2006).

In contrast, other PE models and the CGE models adopt a
more aggregate level of resolution, which is more in line with
the spatial resolution of economic statistics. IMPACT runs on
271 food production units (FPUs), but its climate-induced shock
originating from crop models are based on the 5 arc minute res-
olution of the SPAM data. MAGNET, GTEM, and ENVISAGE
operate on a regional crop allocation; EPPA does so as well
but runs in connection with the Terrestrial Ecosystem Model—
TEM (Felzer et al., 2004), which distributes EPPA’s land-use
predictions by 0.5◦ grid cell level based on climate, soil, and
economic information. FARM, GCAM, and AIM use the GTAP
AEZ data, and land use is aggregated to the level of AEZs
within countries (Monfreda et al., 2009). As most economic
data are also available at the country level, FARM and AIM as-
sume a single, national production function in which land types
from different AEZs substitute for one another. In GCAM,
each AEZ within a region has its own land allocation tree.

2.1.2. Mobility of land across uses and diversification of
production

Some of the CGE models (ENVISAGE, FARM, GTEM, and
MAGNET) assume land heterogeneity and employ a constant
elasticity of transformation (CET) function by which an aggre-
gate endowment of land is transformed across alternate uses,
subject to a transformation parameter that governs the respon-
siveness of land supply to changes in relative yields and prices.
Other models like AIM and GCAM use logit functions rather
than constant elasticities to model the competition between
different land types. Exponents of these functions, which de-
termine the degree of substitutability, are usually derived from
literature-based estimates of elasticities, or assumed, and in the
base year they are used for calibration. In the AIM model, these
substitution elasticities vary over time; they are constant over
time in GCAM (Wise and Calvin, 2011). Both the CET and
logit approaches have one important limitation; they are sym-
metric to all changes. For example, the ease of conversion from
agricultural land to forest land is the same as from forest to agri-
culture (see Hertel et al., 2009 for a more detailed discussion).

CGE models typically “nest” the land allocation functions
(EPPA is an exception to this and is explained later). Producers
first determine the allocation of crop land among crops. Then
based on the average return to cropland, an allocation is made
between crops and livestock or crops and forestland. All models
use a different nesting structure and there is little evidence that
favors one structure over another. An example for a basic nested
logit structure of land used is presented for the AIM model in
the Data Appendix (Fig. S1). In the first step agricultural, forest
and other land types are differentiated. The agricultural land is
then further divided between cropland and grassland. Grassland
is then divided among primary grassland and pasture actively
used for livestock production. Under the cropland node land is
allocated to different crops. The individual design within each

model is usually more detailed and differs from this example,
but the basic structure is similar across the CGE models and
GCAM. Identifying transformation elasticities remains a chal-
lenge in CGE modeling as good conclusive empirical evidence
does not exist. They are based on econometric studies and expert
knowledge. In MAGNET, for instance, transformation elastici-
ties are based on the more detailed OECD’s Policy Evaluation
Model (PEM) structure (Huang et al., 2004; OECD, 2003)

The IMPACT model specifies harvested area for each crop
based on given own- and cross-price elasticities of supply. The
problem with this and the CET approach is that the “trans-
formation” of land from one use to another does not make it
possible to track the allocation of hectares across agricultural
activities. This can be done with the spatially explicit land rent
methodology of GLOBIOM and MAgPIE. Here, the allocation
of land to the different crops is based on the relative profitability
of the crops, based on grid-specific biophysical characteristics.
The location of the crop area across calculation units can be
clearly determined. MAgPIE differs slightly from GLOBIOM
and GCAM, minimizing production costs instead of maximiz-
ing profitability.

EPPA assumes that farmers can transform one land category
to other if they are able to cover explicitly the costs of conver-
sion. This approach allows tracking land area in a consistent
way and implies that intensively managed land can be “pro-
duced” from less intensively or unmanaged land, as well as that
farmland can be abandoned. Compared with the CET, this land
transformation approach allows for longer term analysis where
demand for some uses could expand substantially (as the case of
biofuels in some countries), since the share-preserving nature
of the CET functions limits radical land-use change.

2.1.3. Accessing new lands
A critical issue in modeling the long-run supply of land to

different activities in agriculture and forestry is the availabil-
ity of new lands that might be brought into production. The
simplest way to handle this problem is to construct a land sup-
ply schedule in which rising land rents cause additional land
to be brought under cultivation. This is the approach adopted
by van Meijl et al. (2006) and Eickhout et al. (2009) in their
specification of the MAGNET model, which is also used in the
ENVISAGE model (for more details on this, see Hertel et al.,
2009). The disadvantage is the missing spatial component to the
supply decision. These models exaggerate the competition for
land between very different uses—for example, orange groves
and sugar beet fields in the United States, which are clearly in
different biophysical zones. An improved approach is the in-
clusion of AEZs. This is done by AIM and GCAM, which use
the 18 different AEZs specified in the GTAP database (Golub
and Hertel, 2012; Monfreda et al., 2009). FARM does the same
but aggregates the 18 AEZs into six land classes of each world
region. The expansion of crop or other agricultural activities
into forest and other land types is done within the CET or
logit structure (see the AIM model example in Fig. S1). The
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conversion of natural vegetation in EPPA is limited by the ob-
served land supply response in the last two decades. It mimics
the increasing costs associated with larger deforestation in a
single period. It also represents additional institutional costs,
like environmental legislation and consumer pressures for con-
servation, contributing to slow down intense transformation of
natural ecosystems.

The PE models GLOBIOM and MAgPIE simulate the expan-
sion of cropland into other land types at a high spatial resolution.
GLOBIOM uses nonlinear conversion costs in each region to
convert nonagricultural land to agricultural land or to short ro-
tation plantations, as well as to switch between cropland and
grassland. The conversion costs are exogenously determined
and used for calibration. MAgPIE uses a similar approach. The
conversion costs of nonagricultural land into cropland are for
preparation of new land and investments into basic infrastruc-
ture. The values are determined by different case studies and
range between 600 and 7500 US$/ha depending on topogra-
phy, forest type, soil conditions, applied technology, and the
governmental system (Schmitz, 2012). In the version of MAg-
PIE used in this study, it is only possible to expand cropland
into intact and frontier forest and natural vegetation not de-
fined as grazing land or forest (globally around 734 million
ha). Pasture and other land categories are kept constant over
time. In GCAM, land allocation between different land types
is modeled at the level of each AEZ within each geopolitical
region, and is responsive to changes in land profit rates. While
the specific characteristics of any technology (e.g., yield, cost)
within any subregional AEZ are exogenous, endogenous yield
increases may nevertheless occur at larger spatial scales due
to inter-regional shifting in production. In contrast to all other
models, IMPACT focuses only on cropland changes. It bases
its expansion potential on exogenous area growth rates, which
have been determined by a combination of historical changes
in land use and expert judgment on potential future regional
dynamics (Delphi method).2 It also includes the possibility of
agricultural area lost through processes not modeled, such as
conversion to other land uses via government fiat or expansion
of urban area.

2.1.4. Incorporation of forestry and bioenergy
Most models assume that forest area trends are driven almost

exclusively by changes in agricultural area, and only deal super-
ficially with driving forces such as global production, consump-
tion, and trade in forest products and conservation demands. A
key problem is that it takes decades to grow a new forest and
that the forest stock, as well as sequestration potential, depends
critically on the type of forest and its vintage. The PE models,

2 There is no constraint on land availability in IMPACT. The area equations
have been calibrated with low price elasticities of land supply. We did not
observe any dramatic changes in land expansion at the FPU level that occurred
and did not find any unrealistic cases where land used exceeded available arable
land at the FPU level. In fact, the endogenous changes in aggregated land use
were dominated by the exogenous trends in supply (by FPU and land type)
rather than any endogenous effects.

GLOBIOM and MAgPIE, have or are about to incorporate ex-
plicit forest modules to capture the effects. The AIM, FARM,
and GCAM models treat forestry within the CET or logit struc-
ture. In ENVISAGE and MAGNET forest land is not modeled
explicitly but it is part of the potential agricultural land within
the land supply curve. In EPPA, natural vegetation is incorpo-
rated explicitly as part of their “nonuse” value in the utility func-
tion. More details on the challenges of incorporating the forest
sector in CGE models can be found in Sohngen et al. (2009)

The forestry sector is of particular importance in the study
in the context of second generation bioenergy as an additional
demand of land in the future. Second generation bioenergy
feedstocks typically include crop and forest products grown in
short-rotation plantations, and also residues from crop produc-
tion or forestry. In this exercise, GLOBIOM, GCAM, and AIM
account for second generation bioenergy and account for an
additional threat on cropland.3 Additionally, all models (except
ENVISAGE, FARM, and GTEM) treat various first generation
biofuels such as ethanol and biodiesel, which are made from
sugar, wheat, coarse grains, and oilseeds, the demand figures
differ quite substantially between models. The future demand
of this category in all models in this study is based on policy
mandates. For simplicity they are kept constant after 2030.

2.1.5. Production technology and technological change
Technological change (TC) is a critical driver of land use,

and a critical assumption in the projection of land use. For ex-
ample, Sands and Leimbach (2003) suggest that globally 800
million ha of cropland expansion could be avoided with a 1.0%
annual growth in crop yields. Popp et al. (2011) show that pro-
tecting natural forests does not decrease biomass availability
for energy production, if the reduction in available agricultural
land is compensated by higher rates of TC. The Millennium
Ecosystem Assessment (MEA, 2005) scenarios project positive
but declining crop productivity growth over time due primarily
to diminishing marginal technical productivity gains and envi-
ronmental degradation. For this study, most models have har-
monized their exogenous TC rates to the assumed rates from
the IMPACT model. The only exception is MAgPIE as the only
model, which generates endogenous TC rates (Dietrich et al.,
2012, 2014). However, in addition to the exogenous given TC
rates, the models have individual endogenous adjustments re-
lated to an improved allocation of crops or substituting capital
and labor for land (see more details on the different implemen-
tations in Robinson et al., 2014).

Robinson et al. (2014) describe the specifications of the var-
ious production technologies used in the various models. They
conclude that the elasticity of substitution between land and
other production factors is crucial with regard to land use. The
greater the substitutability, the easier it is to replace land by
labor and capital if land prices increase as land gets scarcer.

3 The land for second generation bioenergy is not reported under cropland
in contrast to first generation bioenergy, which usually comes from cropped
feedstocks.
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Table 3
Scenario overview

Scenario Socioeconomic pathway Climate change

Reference (S1) SSP2 Constant climate
Fragmentation (S2) SSP3 Constant climate
CC-LPJmL (S4) SSP2 HadGEM 8.5 with LPJmL
CC-DSSAT (S6) SSP2 HadGEM 8.5 with DSSAT

In this way the same production can be produced with less
land inducing an endogenous yield effect. A concern is that in
theory crops could be produced without an adequate amount
of land, as the substitution between the various inputs (land,
capital, and labor) is not bounded by physical constraints. In
practice AIM assumes low substitutability between land and
other factors and most yield changes are from the exogenous
yield assumptions. In MAGNET, the elasticity of substitution
is also low (0.05 for crops and 0.1 for livestock, based on Sal-
hofer, 2000). ENVISAGE and GTEM assume a much higher
elasticity of substitution between land and other factors of 0.5,
while this elasticity in FARM is 0.3.

2.2. Scenario description

For this article, we selected four out of eight scenarios, which
have been run for the AgMIP model comparison. The detailed
description of the scenarios is provided in von Lampe et al.
(2014). Table 3 gives an overview about the four scenarios.

We differentiate between two influencing factors—
socioeconomic developments and climate change affecting
agricultural yields. The socioeconomic scenarios consist of pop-
ulation and income projections from the shared socioeconomic
pathways (SSP) scenarios—SSP2 and SSP3—developed for
the IPCC 5th Assessment Report (Kriegler et al., 2012). Cli-
mate change is considered by using the HadGEM2-ES global
circulation model using the representative greenhouse con-
centration pathway (RCP) with the highest radiative forcing
among the four RCPs, of 8.5 W/m2 (Meinshausen et al., 2011).
The reference scenario (S1) assumes no climate change and a
medium pathway of economic growth and population devel-
opment (SSP2). The S2 scenario (“Fragmentation Scenario”),
based on SSP3 generally assumes lower population growth in
developed countries, but higher growth in developing countries.
While growth in total GDP is assumed lower for all parts of the
world, per capita GDP is higher in some countries, such as
Canada. S4 and S6 use the SSP2 population and GDP growth
rates and include the impacts of climate change on crop yields.
They differ according to the crop model used to project the yield
changes. We use the vegetation and hydrology model LPJmL
(Bondeau et al., 2007) and the crop growth model DSSAT
(Jones et al., 2003).4 The productivity shocks are implemented
as land-embodied technical change. In all scenarios trade

4 For a detailed presentation and discussion on the results of the crop model
runs, please see Müller and Robertson (2014).

and forest protection policies remain the same. However, as
Table 1 shows, the models differ according to the implemented
bioenergy demand.

The main intention of the scenarios presented here is to shed
light on the behavior of the different models regarding land-use
change and to support the learning process of this comparison
exercise. Hence, the chosen scenarios are rather extreme than
plausible. On the one hand, S1 and S2 are optimistic in terms
of climate change, since perfect mitigation is assumed with no
climate shocks on crop yields. S4 and S6 represent pessimistic
scenarios with the climate change effect on yield based on a
high growth rate in GHG concentrations and no additional CO2

fertilization effects (see Müller and Robertson (2014) for a
discussion).

3. Projected development of cropland

Figure 1 shows the development of global and regional crop-
land area in the different models compared to historic devel-
opment based on the HYDE data set (Klein Goldewijk et al.,
2011). The projected growth rates of cropped area of the dif-
ferent models are used with the HYDE data of the year 2005.5

The boxplots indicate the cropland expansion in the year 2050
compared to 2005 (HYDE data) in the four different scenarios.
This is done in order to account for the different land-use mod-
eling in the two model types. The key results are summarized
in Table 4.

In Fig. 1, showing the development of global cropland area,
most models indicate that the growth in global cropland con-
tinues in all scenarios. FARM is the exception with decreasing
cropland use at the global level. For GTEM, IMPACT, EPPA,
GLOBIOM, and GCAM the rate of change is less than in the
past 50 years as reported by HYDE.6 MAgPIE and ENVIS-
AGE indicate a continued trend of the historic growth while
AIM and MAGNET project a slightly increasing trend in global
land use. Compared to S1, the fragmentation scenario (S2)
has lower global cropland area growth rates in most mod-
els. Strongest decreases can be observed for AIM, GTEM,
and MAGNET, whereas FARM has higher cropland reduc-
tion rates than in S1. For the climate change scenarios (S4
and S6), all models have increasing cropland compared to S1;
however, the differences between the models are large. AIM,
GCAM, and MAGNET expect a relatively large increase in area.
Other models indicate no huge cropland changes due to climate
change.

5 All models have different base-year quantities of cropland due to different
definitions and crops covered in the models. We use the HYDE database to
harmonize the base-year values and make the model results comparable, thereby
assuming that the growth rates are independent of the base-year values. Since
HYDE reports physical area while IMPACT and GLOBIOM report harvested
area, the results of these models are slightly overestimated in Figs. 1 and 2.

6 Due to the large uncertainty about the historic expansion of cropland among
the various sources, the projected range of possible future developments of
cropland is very much in line with the uncertainty range of the estimation of
historical rates.
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Fig. 1. Development of global cropland in S1 (cropland from the models is normalized to HYDE data from 2005; left graph) and change in cropland between 2005
and 2050 in S1, S2, S4, and S6 (mean and standard deviation; right graph). The boxplots display the median (black line), the upper and lower quartile (box), the
minimum and maximum of the distribution (whiskers), and the outlier (dots; Fig. S5 in color).

Table 4
Change in cropland over time in S1 (“2050”) and across scenarios compared to S1 (“SSP3” and “CC”; in %)

Region Scenario AIM ENVISAGE EPPA FARM GCAM GLOBIOM GTEM IMPACT MAgPIE MAGNET

AME 2050 +95 +54 +120 + +26 +51 +44 +25 +19 +51
SSP3 + – −27 + o− + −16 + o+ +
CC + + + +17 + – + + o+ +

ANZ 2050 +65 – – −18 – −14 −35 – n.a. +
SSP3 + + o+ + o+ – −11 – n.a. +
CC + + o− + + + + + n.a. +14

EUR 2050 −11 – −54 −15 – – −23 −15 – −20
SSP3 −12 − +19 o+ – – o+ – – –
CC +13 + + + + + + + + +10

FSU 2050 −12 – + −36 +23 −23 −19 + + –
SSP3 + −11 – + – – – – o+ −14
CC + + + + +16 + + + o+ +21

NAM 2050 +14 +17 −16 – o+ + −13 – + +30
SSP3 −21 −18 +13 + – – + – o+ –
CC +27 + + +14 +15 + + +10 – +43

OAM 2050 +24 +45 +15 + +23 +37 + +44 +78 +65
SSP3 + −13 + – – – – – + –
CC +16 + + +12 +17 +14 + +10 + +25

SAS 2050 +40 +19 – – + o− + + +11 +24
SSP3 – – + o− + o+ – o− – –
CC + + + + + + + + + +

WLD 2050 +25 +19 + – +11 +11 + + +18 +26
SSP3 – – – + o+ o− – o− o+ –
CC +10 + + + +11 + + + + +18

Notes: 2050: cropland change in S1 between 2005 and 2050; SSP3: cropland change in S2 compared to S1 in 2050; CC: cropland change in S4 + S6 (average)
compared to S1 in 2050; +: cropland change between +1% and +9%; o+: cropland change between 0% and +1%; o−: cropland change between −1% and 0%; -:
cropland change between −9% and −1%.
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Fig. 2. Growth of global pasture area in 2050 (compared to 2005) for AIM, ENVISAGE, EPPA, FARM, GCAM, GLOBIOM, GTEM, and MAGNET (Fig. S6 in
color).

In ENVISAGE, FARM, GTEM, MAGNET, and GLOBIOM,
both pasture and crop area increase (Fig. 2). AIM, EPPA, and
GCAM have decreasing global pasture areas in 2050; in MAg-
PIE pasture is constant.

Figure 3 highlights the results for the seven different regions
considered in this analysis. Starting with the region Africa and
Middle East (AME), cropland in EPPA increases by 120% and
in AIM by almost 100%. In contrast, the area in FARM in-
creases only marginally. AIM, ENVISAGE, GLOBIOM, and
GTEM show an increased growth rate in the second half of
the projected period (2030–2050), whereas the growth rates in
GCAM, IMPACT, MAgPIE, and MAGNET are reduced. The
fragmentation scenario influences EPPA and GTEM results,
where cropland decreases by 27% and 16%, respectively (Ta-
ble 4). The influence of climate change is consistently low. In
GLOBIOM, cropland area decreases slightly and in FARM in
average around 17% more land is used for agriculture under
climate change.

The range of future cropland use in Australia and New
Zealand (ANZ) is relatively large. AIM projects an increase
by almost 60% while GTEM and GLOBIOM see a decrease
of around 35% and 14%, respectively. The difference between
AIM and GTEM in 2050 amounts to more than 40 million ha
compared to total area of 53 million ha in 2005. The influence of
fragmentation (decrease by 11% in GTEM) and climate change
(average increase by 14% in MAGNET) is rather low.

For Europe, the models indicate that the decline in cropland
will continue, although MAgPIE and GCAM show some slight
increase to 2030. The largest reductions are projected by EPPA
with cropland area more than halved by 2050. GTEM, MAG-
NET, and IMPACT follow largely the trend of the past decades.
All models project an increase in 2050 cropland in scenarios
with climate change, with AIM (+13%) and MAGNET (+10%)
at highest.

The Former Soviet Union (FSU) saw dramatic declines in
cropland after the collapse of the USSR in the 1990s. This trend
has generally stabilized in the last decade, and in the future, the
models have especially divergent trends for cropland in this
region. The changes vary between a −36% decline (almost 125
million ha) for FARM and a 23% increase (almost 250 million
ha) in GCAM. Six of the ten models project a decrease of
cropland in this region. ENVISAGE, MAGNET, and IMPACT
show increases till 2030 but decreases after that. The influence
of increasing population and decreasing income (S2) generally
has a negative impact on cropland use, with AIM, FARM, and
MAgPIE as exceptions. Climate change puts new pressures on
cropland. The largest mean changes in 2050 compared to S1
are from GCAM (+16%) and MAGNET (+21%).

While cropland was fairly stable in North America in the
last 50 years at about 230 million ha, MAGNET, ENVISAGE,
and AIM see an increase in 2050 to between 270 and 300
million ha. Only GTEM, EPPA, and IMPACT project lower
cropped area in 2050 compared to 2005. Fragmentation and
climate change seem to have huge impacts on cropland in North
America. Under SSP3, cropland is mostly reduced with the
greatest declines in AIM (−21%) and ENVISAGE (−18%).
An exception is EPPA with a 13% increase in cropland. With
climate change, the opposite is projected with highest expansion
rates from MAGNET (+43%) and AIM (27%). In MAGNET
cropland expansion exceeds 200 million ha in 2050, mostly in
Canada.

In the past 50 years, Latin America (OAM) was the region
with the greatest expansion of cropland, increasing from around
100 to 160 million ha between 1960 and 2005 (HYDE). ENVIS-
AGE, IMPACT, and GLOBIOM continue this trend, to around
220 million ha in 2050. FARM, GTEM, and to a lesser ex-
tent GCAM and AIM observe a slowing down of expansion,
whereas MAgPIE projects an accelerating trend to 280 million
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Fig. 3. Development of cropland in the each of the seven regions in S1 (cropland from the models is normalized to HYDE data from 2005) (left graph) and change
in cropland between 2005 and 2050 in S1, S2, S4, and S6 (mean and standard deviation). The boxplots display the median (black line), the upper and lower quartile
(box), the minimum and maximum of the distribution (whiskers), and the outlier (dots; Fig. S7 in color).
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Table 5
Impacts of climate change on cropland expansion (mean of all models); Figs. 1
and 3 show the standard deviations and the outliers to the respective means

Cropland expansion by
2050

Difference due to climate
change

Region
in S1
(106 ha)

in S4/S6
(106 ha)

absolute
(106 ha)

as share of
total cropland

AME 145.6 168.5 22.9 7.7%
ANZ −0.4 3.1 3.5 6.7%
EUR −20.1 −13.3 6.8 5.3%
FSU −11.6 1.8 13.4 6.7%
NAM 8.1 41.8 33.7 14.8%
OAM 56.7 83.7 27.0 16.6%
SAS 27.6 51.0 23.4 5.0%
World 192.7 317.2 124.5 8.1%

ha. Climate change increases cropland area with rates ranging
from 5% to 25%. SSP3 has a low, but largely negative impact
with highest reduction in ENVISAGE (−13%).

The projections in South Asia (SAS) are similar to OAM in
relative terms by having overall increasing rates of cropland
use, except for FARM and EPPA. However, the rates are much
lower with the maximum of 40% (AIM). The impact of the frag-
mentation scenario is mixed across the models, whereas climate
change results in positive but low cropland development.

Table 5 summarizes the regional and global results for the ref-
erence scenario (S1) and the climate change scenarios (S4/S6)
in physical units (ha), as well as the absolute difference and
the percentage difference compared to 2005. By far the largest
cropland expansion is projected in Africa (+121 million ha).
OAM and SAS also see significant increases in land converted
to agricultural use, driven by socioeconomic changes. The dif-
ferences due to climate change are largest in North America
(+34 million ha), which is mainly triggered by the high expan-
sion in MAGNET, followed by OAM (+27 million ha). These
two regions account for around 15% of the initial cropland area
in 2005. Globally, almost 200 million ha are converted in the
S1 scenario (with no climate change) and 320 million ha under
climate change (mean).

4. Discussion of differences in model results

One possibility is that model structure explains the differ-
ences in land-use changes across the models. Figure 4 plots
model types (CGE, PE, or spatial PE) on the horizontal axis,
land-use modeling approach on the vertical positive axis, and
land data source on the vertical negative axis.

From Fig. 4 groups of models can be identified, which have at
least a similar approach to modeling land-use change. FARM,
GTEM, MAGNET, and ENVISAGE use the CET approach to
allocate land to the different uses. MAGNET and ENVISAGE
use a land supply curve for modeling cropland expansion. While
AIM is a CGE model and GCAM is a PE model, they both use
a nested logit approach and rely on data from GTAP and FAO.

They differ in how they nest crops within the AEZ structure.
GCAM assumes that each crop is classified into 18 AEZs in a
region and every production is described as a fixed-coefficient
production function, while AIM assumes that each crop sector
in a region is defined by three aggregated AEZ lands nested by
a logit function.

MAgPIE and GLOBIOM are both spatially explicit land-use
models, which base their expansion on the land rent approach,
but use different data sources. EPPA has a similar land rent
approach but embeds this in a general equilibrium framework
with GTAP and the TEM model as the main data sources.

In addition, we can differentiate two groups according to their
trade assumptions. One group is the trade-restrictive models,
which use the Armington assumption (all CGE models; Hertel
et al., 2007) and MAgPIE as it uses the self-sufficiency ap-
proach with restrictive liberalization assumptions. On the other
hand, the other PE models (GCAM, GLOBIOM, and IMPACT)
are more trade responsive due to their integrated market repre-
sentation. More about the differences in trade and the impact on
the results is discussed in Ahammad et al. (2014) and Nelson
et al. (2013).

From the point of results, ENVISAGE and MAGNET are the
closest group due to their similar implementation. MAGNET is
usually a bit higher caused by the different available land pools.
In addition, the elasticity of substitution between land and other
factors is five times higher in ENVISAGE and equal to 0.5.
This induces more substitution effects when the land price gets
higher and subsequently the land expansion is less. In many
cases the group of FARM and GTEM estimate future land use
more conservative compared to other models. This can be partly
explained by relatively low elasticities of transformation for al-
locating land. Furthermore, FARM is the only model that indi-
cates a decrease in global cropland, and FARM is with AIM the
only CGE model that includes forestry within a CET structure.
In FARM, simulations of future land use are sensitive to two
types of parameters: Relative rates of land-augmenting techni-
cal change, and income elasticities of demand for forest prod-
ucts. Exogenous rates of yield improvement for managed forests
are much lower than rates of yield improvement for crops.

In contrast, the other CGE models are usually at the upper
end, especially MAGNET and AIM and to a lower extent EPPA
and ENVISAGE. The increasing trends in AIM and MAGNET
are caused by the assumption that still a lot of additional land can
be made available for agriculture. In MAGNET, these potentials
are based on the IMAGE model, which indicates that still a lot
of land can be taken into production in Africa, South Amer-
ica, and North America (especially Canada). In other words,
these countries are on the flat part of the supply curve where
more land can be taken into production without much addi-
tional costs. Furthermore, their production trees imply that land
has a low degree of substitutability with other factors such as
capital and labor. In AIM, there are especially limited sub-
stitution possibilities of land with other factors, as compared
with the other models in this study (see, also Robinson et al.,
2014).
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Fig. 4. Structuring of models according to their used data and methods.

Except for OAM, MAgPIE project only modest expansion
of cropland area in the different regions. One reason is available
land for conversion. In the version of MAgPIE used here, only
natural vegetation and intact and frontier forest can be converted
to cropland. Especially in sub-Sahara Africa this makes a huge
difference as compared to other models, since MAgPIE already
uses the entire land potential in the S1 scenario (see also Table
S1). In addition, MAgPIE considers land conversion costs (as
explained in Section 2). The same holds for GLOBIOM, which
mostly increases cropland in AME and OAM. For FSU, GLO-
BIOM sees considerable decreases due to low profitability of
agriculture.

Another source of uncertainty is the assumed bioenergy de-
mand. Except ENVISAGE, FARM, and GTEM, all models as-
sume first generation bioenergy demand in the future. Whereas,
GLOBIOM, MAgPIE, and GCAM have harmonized their de-
mand for future first generation bioenergy according to current
policy mandates (constant after 2030), MAGNET, for instance,

has relatively high first generation biofuel targets in countries
like the United States and Brazil. This puts additional pres-
sure on cropland in contrast to models with lower bioenergy
demand. Land devoted to second generation bioenergy is not
reported here, but still reduces the potential cropland pool for
expansion.

The fragmentation scenario (S2, SSP3) differs from the
middle-of-the-road scenario (S1, SSP2) by a much higher pop-
ulation growth and a much lower GDP growth. The differ-
ences between the scenarios are especially large in develop-
ing countries. Significant decreasing global cropland is ob-
tained for AIM, ENVISAGE, EPPA, GTEM, and MAGNET
(all CGE models). Hence, it seems that in the CGE models (ex-
cept FARM) lower cropland demand due to lower GDP effects
dominate the increase in demand for cropland due to a higher
population. In S2, GDP is 32% lower than in S1 but population
only 11% higher by 2050. Since most of the crops are con-
sumed via processed products with relatively high income per
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capita demand elasticities, the demand in S2 is lower than in S1
(see Valin et al., 2014 for the differences in demand between
SSP2 and SSP3 and the income elasticities). For FARM, the re-
sults are opposite and there are largely positive effects of SSP3
indicating that population effects dominate GDP effects due pri-
marily to low income elasticities of demand for crops. The PE
models are hardly affected by the different SSP assumptions.

Climate change induces a relatively large increase in area
in AIM, GCAM, and MAGNET. The mechanism is similar to
the baseline: Large potential land availability and in case of
MAGNET and AIM low endogenous yield effects. Other mod-
els indicate no or very little cropland change and assume that
(almost) all negative effects in yield can be compensated by
endogenous yield effects in their model. This is because land
expansion is largely exogenous (IMPACT), adaptation through
switches across production systems and also reallocation across
the SimUs (GLOBIOM) or substitution possibilities (ENVIS-
AGE, GTEM) are easy. Moreover, except for MAgPIE, the
demand side adjusts due to the climate change pressure (see
Valin et al., 2014) and international trade is rather flexible (es-
pecially for IMPACT and GLOBIOM with homogenous goods
assumption, to a lesser extent for the CGE models with Arm-
ington assumptions). In MAgPIE, cropland even decreases due
to climate change as it adjusts for climate change effect by in-
vesting in TC (TC effects all crop groups to the same extent). A
second reason is the different implementation of climate change
induced yield shocks. In contrast to the other models, climate
change impacts are not considered on FPU level, but on grid
cell level (see Nelson et al., 2014 for more details). This allows
MAgPIE to consider the large heterogeneity of climate change
within FPUs and leads to more specialization and lower effects
of climate change.

Turning now to the analysis of the regional-specific results,
we obtain the largest cropland expansion in Africa and the Mid-
dle East (AME). EPPA and AIM increase cropland by around
100–120% due to the combination of a 2.5-fold population in-
crease, economic growth, and only 50% yield increase of other
agriculture products, which dominate in AME. Another reason
for EPPA is the low land conversion and institutional costs in
Africa, resulting in a large land supply response. ENVISAGE,
GLOBIOM, MAGNET, and GTEM get an increase in cropland
use around 50%. The PE models MAgPIE and IMPACT observe
a relatively moderate increase of about 15%. Key to this result
is the land availability, or how easy it is to get new land into
production. As explained, the potential cropland in MAgPIE in
Africa is limited (see also Table S1). In the fragmentation sce-
nario (S2) we see for most models an increase in cropland and
that differs from the global situation discussed earlier. Popula-
tion effects dominate GDP impacts in AME. EPPA and GTEM,
however, show the opposite with cropland decreases a lot in
S2 relatively to S1. While cropland productivities are identi-
cal in S1 and S2, GTEM enables differential land productivity
shocks across scenarios for livestock. Since a general negative
productivity shock implied under S2 relative to S1 is distributed
across inputs and sectors, including land used in the livestock

sector, and since the demand for livestock products is relatively
price insensitive (a feature of GTAP-based CDE parameters),
livestock sector uses more land per unit of output under S2 rel-
ative to S1. Consequently, land moves out of crops into pastoral
activities displaying a relative decline in the cropping land. In
the case of EPPA, GDP shocks are applied through labor pro-
ductivity changes, nulling the effect of the population shock.
The decrease in productivity to reach the prescribed GDP in
EPPA is the largest in AME and the lowest in EUR, changing
agriculture comparative advantage in favor of EUR.

GLOBIOM and especially GTEM assume a strong reduction
in cropland in ANZ which is in contrast to the historical trend.
In GTEM, this has two reasons: First, total agricultural land
drops by 27% significantly over the projection period (in GTEM
aggregate land supply for agriculture is exogenous at a regional
level and based on a 20-year historical trend as described in
Section 2); second, export-driven growth in livestock sector
raises land rental in livestock sector relative to crops sector such
that land moves out of crops into pasture.7 In addition, one has
to consider the distribution of agricultural land in ANZ. Ninety
percent of agricultural land is used by the livestock sector, while
only 10% is used by cropping sectors in total. Because of this
relation, a small increase in the pastoral activity would mean
a big drop in land used by the cropping sectors in a relative
sense. AIM, on the other hand, assumes that a lot of potential
cropland is available in ANZ. GTEM expects also a decrease in
cropland in the fragmentation scenario (S2) mainly due to the
lower GDP growth rate and related demand. Climate change
impacts are slightly positive for this region.

In Europe, models agree on the downward trend for Europe
in S1. EPPA even projects a bisection of European cropland
since in S1 EUR is losing competitiveness in crop production
to regions with low costs of cropland conversion. In contrast,
in S2 EPPA shows that EUR is gaining comparative advantage
due to the lowest shock in labor productivity compared to other
regions, leading to almost 20% more cropland use than in S1.
Climate change impacts increase cropland use in all models in
Europe. The impacts are highest for AIM and MAGNET as
land is more abundant than in other models and the substitution
elasticity is lower.

In the region FSU, most CGE models plus GLOBIOM8 see
a decrease in area until 2050. Among the other models, es-
pecially GCAM allows for considerable cropland expansion.
This expansion in GCAM occurs in part due to low base-year
(2005) land profit rates for the dominant agricultural crops,
which become substantially more profitable in the future due to
the assumed baseline improvements in yields. This expansion

7 In GTEM, cropping productivity is governed by the crop model results
whereas livestock productivity is governed by the economy-wide productivity
growth implied by the exogenous GDP growth paths. Because GDP differs
between S1 and S2, livestock productivity is also different.

8 Likely due to the nonlinear trade cost in GLOBIOM, which tend to maintain
some inertia in the trade patterns. Hence, a fast crop yield growth, decreasing
population and medium strong GDP growth may lead to further land abandon-
ment.
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also occurs because of a large amount of land that is po-
tentially available for agricultural conversion—approximately
1,700 million ha, with about 200 in relatively productive AEZs.
A bottleneck for this region is the future labor supply that will
determine if this land will be exploited or not.

In North America, the key difference between the models is
the potential land that can be taken into production. IMAGE-
based models, like MAGNET and AIM, show large potential,
especially in Canada, whereas other models see very limited
potential. Therefore, land increase is highest in MAGNET and
AIM. The increase in ENVISAGE is much less as these models
assume much higher substitution elasticities between land and
other production factors. Almost all models show decreasing
land in the Fragmentation scenario (S2) as the lower demand
effect to a lower GDP in NAM dominates the slightly lower
population effects in NAM. Climate change impacts are very
high in MAGNET and AIM as the lower yields lead directly
to land expansion as possibilities are there and incentives for
higher yields therefore are low.

The results for South Asia (including China) show in average
a moderate increase in cropland. Similarly to NAM, MAGNET
shows the highest potential of cropland in SAS and EPPA is
very restricted in terms of land expansion.

The assumptions on land availability in Brazil and other
countries containing a lot of natural vegetation determine the
results in OAM. Another source of uncertainty is that those
countries have recently seen a considerable slowdown in land
clearing (Soares-Filho et al., 2010), indicating a beginning for-
est transition, as observed in countries like Thailand or Viet-
nam (Meyfroidt et al., 2010; Meyfroidt and Lambin, 2011). The
Fragmentation scenario lowers cropland use in OAM quite sub-
stantially in almost all models as the “exporter of the world” suf-
fers more than the average from lower economic growth rates.
In FARM, cropland expansion is slightly negative as forestry
is more competitive and counterbalances the demand from
agriculture.

5. Conclusions

The future of human influence on land is critical from envi-
ronmental and climate perspectives. The expansion of cropped
area threatens biodiversity, carbon stocks, and ecosystem ser-
vices. Projections of future land use have seen widely varying
results. We analyze methodological differences among different
agro-economic models on the basis of the results of a compre-
hensive agro-economic model intercomparison exercise. We
harmonized key input data and assumptions across 10 different
models.

Global cropland without the impact of climate change in-
creases on average across all models by almost 200 million ha
between 2005 and 2050 (mean). The standard deviations are
high with −40 and +110 million ha. Pasture land area expands
in most models that model pasture explicitly. Climate change
further increases the pressure on land resources by increasing

cropland expansion to more than 300 million ha in average.
Most of the cropland expansion takes place in Africa, followed
by OAM due to their large potential of suitable cropland. The
sensitivity to climate change in North America is surprising
and related to the huge land potential there seen by some of the
models. Together with OAM most of the cropland is expanded
due to climate change in those two regions. In contrast, in sub-
Saharan Africa climate change-induced cropland expansion is
moderate.

With respect to methods used, all of the models approach
land-use change from an economic perspective. However, since
the models come from different backgrounds, their individual
focus is very different. Whereas the CGE models were initially
built to analyze macro-economic and trade policy issues and
have only recently entered the climate change and land-use
change research fields, most of the PE models approaches have
a long history of application to agricultural sectors responses,
although they do not always cover all production factor markets.
A particular strength of spatial PEs lies in their fine resolution.
It allows the models to consider the spatial heterogeneity of bio-
physical factors, like the soil quality or the impacts of climate
change, which are critical when analyzing land-use change. The
same holds for the different land types, which are much better
represented in the spatial PE models than in the stand-alone
CGE models. In addition to the economic behavior, social, po-
litical, and cultural factors have to be considered as well. Here,
land-use modeling is still at the beginning of this trajectory.
Modeling future TC is decisive due to its direct link with land
expansion. Endogenous approaches are emerging but still in its
infancy. Data and empirical studies are the main challenges. A
further big field of future research should be devoted to the in-
teraction of cropland and pasture. Too little is known about the
costs of converting one land type into the other and about the
biophysical and socioeconomic availability of pasture for crop-
land conversion. Another challenge is the interaction between
cropland and managed forest area, which seems to gain com-
petitiveness as energy prices continue to rise. Here the different
time scales of agriculture and forestry is a major challenge for
modelers (see e.g., Sohngen et al., 2009). A critical need for
modeling economic land-use change is the availability of data.
Although the data basis on global land use has improved con-
siderably (see Section 2), especially data on potential cropland
and their suitability on a global level and data about the ease of
converting this land into cropland are lacking. With the latter,
we refer to land conversion costs and substitution elasticities. A
lot of qualitative assumptions are taken in those fields, leading
to biased results and a low replicability. Especially Africa and
the northern countries, like Canada and Russia (due to climate
change) leave us with high uncertainty concerning potential
cropland. In OAM, data availability is much better but high
uncertainty exists concerning forest protection.

During this first comprehensive agro-economic model in-
tercomparison, it became clear that more emphasis has to be
put on the underlying supply elasticities. Unfortunately, on the
supply side, too many models are relying on complex nested
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structure for production function. Others are managing land-use
change through explicit conversion costs, without elasticity-
driven functions. Therefore, estimating these elasticities re-
quires specific controlled experiment to be performed by all
models, which was not undertaken under this first round of
comparison activities. Such technical investigations are how-
ever on the work plan of the next round of comparison, which
will start at the end of this year. Finally, the need for validating
agro-economic models is apparent. First attempts have been
presented at the recent GTAP conference (e.g., Baldos and Her-
tel, 2013; Bonsch et al., 2013) trying to approach the question:
How well are the approaches suited to describe past and current
developments? Hind casting (model starts in the past) or back
casting (model forecasts into history) would be options to vali-
date the model outcome with observed data. It is only through
such systematic research that it will be possible to eliminate the
least promising approaches and focus on those that are worthy
of further attention.
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