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Abstract

We study the transition between non renewable and renewable energy
sources with adjustment costs over the production capacity of renewable en-
ergy. Assuming constant variable marginal costs for both energy sources,
convex adjustment costs and a more expensive renewable energy, we show
the following. With sufficiently abundant non renewable energy endowments,
the dynamic equilibrium path is composed of a first time phase of only non
renewable energy use followed by a transition phase substituting progres-
sively renewable energy to non renewable energy and a last time phase of
only renewable energy use. Before the complete transition towards renew-
able energy, the energy price follows a Hotelling like path. Depending upon
the shape of adjustment costs, investment into renewable energy may either
begin before production of renewable energy or be delayed until the energy
price achieves a sufficient gap with respect to the renewable energy marginal
production cost. In all cases, the renewable energy sector bears negative re-
turns over its investments in its early stage of development. Investment into
renewable energy production capacity building first increases before having
to decrease strictly before the depletion time of the non renewable resource.
Renewable energy capacity continues to expand afterwards but at a forever
decreasing rate converging to zero in the very long run. The development
path of renewable energy may be largely independent from the non renew-
able resource scarcity. In particular with initially abundant non renewable
energy, the length of the transition phase between non renewable and renew-
able energy together with the accumulated renewable production capacity
at the end of this phase do not depend upon the scarcity rent of the non
renewable resource and of the initial size of the resource stock.
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1 Introduction

The transition between the use of different natural resources typically takes
time. While in use since the sixteenth century in Great Britain, coal min-
ing replaced only very slowly charcoal in iron processing or wood in energy
provision until the nineteenth century (Wrigley, 2010, Fouquet, 2008). The
same may be said for the use of oil and natural gas which developed over
a sixty years range period since the end of the nineteenth century. More
recently, the development of new energy sources like solar or biofuel is ex-
pected to extend well over the current century (Nakicenovic, 1998). Most
policy proposals to develop such alternatives in order to mitigate climate
change are explicitly time dependent, the European Union twenty-twenty
plan being one prominent example. Current and prospected energy policies
thus strongly acknowledge the time lags implied by long run adaptations of
the present energy mix. In some sense the climate challenge may be seen as
a time to act problem, balancing the speed of possible adaptations to climate
change with the speed of such a change.

This time to build issue covers many different problems ranging from
the need of a sufficiently rapid technical progress to develop economically
relevant energy alternatives to a sufficiently fast investment pace in natu-
ral resources services provision. Adaptation, or more generally development
of the exploitation of natural resources is a costly process falling under the
heading of ’adjustment costs’ in investment economics. This issue of adjust-
ment costs is not only of concern for the development of new resources but
also for the development of existing ones, a well known feature of resource
industries, either for the exploration and exploitation of new oil fields or for
mineral resources.

It is also related at a more macroeconomic level to the sustainability de-
bate, the replacement of depletable resources either by renewable ones or by
man made capital goods typically requiring time. The classical treatment
of this issue (Dasgupta and Heal, 1974, 1980) emphasizes that the speed of
replacement of exhaustible resources by man made capital goods is highly
dependent upon the ease of substitution between natural and man made in-
puts, as measured by substitution elasticities between inputs at the aggregate
technology frontier level. But at the firm or at the sectoral level, the reference
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to substitution elasticities is a short cut way to describe complex adjustment
processes of inputs combination typically costly and time dependent.

Adjustment costs have received a lot of attention in investment the-
ory, seminal contributions in this strand of literature being Lucas (1967),
Gould (1968) and Treadway (1969). However, while fully acknowledged as
an important issue in natural resource development problems at least since
Hotelling, 19311, it has attracted a relatively modest attention from resource
economists. The textbook treatments of substitution between natural re-
sources (for example Herfindahl and Kneese, 1974) do not consider explicitly
adjustment costs. This results into a description of the history of natural
resources use development as a sequence of time phases of exploitation of
a dominant resource (the wood age, the coal age, the oil age) separated by
quick transitions from a dominant resource to another one, according to their
relative cost order.

In the resource literature, reference to adjustment costs has served two
main purposes. The first one concerns the validity of the Hotelling rule in
the theory of the mine. The well known observation that actual resource
prices do not follow the r percent growth rate prescribed by the Hotelling
rule may be explained by the presence of adjustment costs in mining utili-
ties operation. That investment costs may result in constant resource prices
has been shown by Campbell (1980) extending the previous work of Puu
(1977). This problem has also been carefully examined by Gaudet (1983) in
the context of the theory of the mine. The strength of the Campbell model
is to take explicitly into account the consequences of extracting capacity
constraints over the resource price, but its main weakness, as emphasized by
Gaudet (1983), is to transform the gradual capacity development process into
a static investment problem, the mining industry having to choose initially
a given production capacity held constant over the whole mine life duration.
The Gaudet analysis describes thoroughly this process but is cast into the
microeconomic framework of the individual firm investment theory and thus

1"The cases considered in the earlier part of this paper all led to solutions in which
the rate of production of a mine always decreases. By considering the influence of fixed
investments and the cost of accelerating production at the beginning, we may be led
to production curves which rise continuously from zero to a maximum, and then fall
more slowly as exhaustion approaches. Certain production curves of this type have been
found statistically to exist for whole industries of the extractive type, such as petroleum
production." Hotelling H. The Economics of Exhaustible Resources, 1931, p 164.
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does not take into account the resource price consequences of the firms invest-
ment decisions, an aspect examined in a similar context by Lasserre (1986).
The second purpose is the study of transitions between different resources,
main contributions to this issue being Olsen (1989) and Cairns and Lasserre
(1991). The analysis of Olsen and Cairns and Lasserre are somewhat com-
plex and focus upon the transition between different non renewable resources,
thus trying to generalize the Herfindahl model to resource transitions under
adjustment costs.

Very few parallel effort has been made to describe the transition between
a non renewable resource and a renewable one, this last resource being sub-
mitted to adjustment costs in its productive capacity. One important con-
tribution in this direction is Tsur and Zemel (2011) which model the capital
accumulation process in producing solar energy under competition with ex-
isting fossil fuel resources. However Tsur and Zemel do not take into account
the exhaustible nature of fossil fuels, assuming a forever constant supply of
such resources. The study of transitions between energy sources appears
clearly useful in the context of the climate policy debate, the development of
’green’ energy alternatives being a major theme in this respect. The percep-
tion that green energies develop at a too slow rate is common place in the
public debate and it already exist in industrialized countries several policy
initiatives aimed at subsidizing renewable energy sources. The rationale for
such subsidies has been questioned recently in the so called ’green paradox’
puzzle. This is the point raised in conjunction with adjustment costs by
Gronwald et al. in a recent work (Gronwald, Jus and Zimmer, 2010). But
curiously they consider investment costs in the provision of fossil fuels and
not in green energy. The issue has also been studied recently by Smulders
and Zemel (2011) within the context of macro economic growth theory but
without explicit consideration for the exhaustibility of the polluting resource.

The works of Salant and Switzer (1983) and Oren and Powell (1989)
are close to our work using a similar model. However they do not derive a
complete solution to the problem leading them into incorrect claims, like the
necessity to use renewable energy at any time when the energy price would
at least cover its marginal cost of production.

The objectives of the paper are two-fold. First we want to stress the im-
portance of investment constraints over the development of renewable energy
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alternatives. In order to focus upon the investment issue we shall dispense
from considering explicitly the pollution problems raised by burning fossil
fuels. Hence the main motivation for developing energy alternatives will be
the increasing scarcity of non renewable fossil fuels like oil. For the same
reason we shall not deal with the important issue of technical progress or
learning by doing in the use of new energy sources. This issue has raised
significant attention in the macroeconomic endogenous growth literature re-
cently (Acemoglu, Aghion, Burzstynx and Zemmour, 2011) but the precise
micro foundations of this analysis, both at the firm level and at the energy
sector level remain to be settled carefully. Technical progress should result
into the generation of higher quality capital goods, an issue which would
require to plug the analysis inside some vintage capital model, a study we
deserve for further research.

Second we want to explicitly consider the price implications of the devel-
opment of renewable energy. One should expect that the gradual increase
of renewable energy inside the energy mix will affect both the energy price
trajectory and the depletion path of the already in use non renewable re-
source. Conversely, the time path of investment into renewable alternatives
should depend upon the relative scarcity of the non renewable resource. To
deal with this issue we shall depart both from the usual investment analysis
at the individual firm level and from the aggregate studies at a macro level.
We consider a partial equilibrium setting where the energy sector is com-
posed of a population of identical competitive firms either producing energy
from a non renewable resource or from a renewable one. Furthermore we
assume that the renewable energy industry has to purchase specific equip-
ments, linking at the equilibrium the dynamics of the energy price to the
dynamics of the renewable energy capital input price. We assume an upward
slopping supply curve of specific equipment of the renewable energy industry
or equivalently an increasing marginal cost curve of equipment provision to
the renewable industry. Thus the renewable industry faces external adjust-
ment costs in the Lucas (1967) sense rather than internal adjustment costs
in the Gould (1968) sense. For simplicity we assume constant average and
marginal variable operating costs in the non renewable and renewable energy
industries and a lower operating cost of non renewable energy.

Our main findings are the following. With sufficient non renewable re-
source initial endowments, the equilibrium path is a sequence of three phases,
a first phase during which only the cheaper non renewable resource is ex-
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ploited, followed by a transition phase of simultaneous use of non renewable
and renewable energy sources up to some finite time when the non renew-
able resource reserves become exhausted. This transition phase is followed
by a last renewable energy use phase of infinite duration. During the first
and second phases, the energy price increases following a Hotelling like path,
while it decreases during the last phase because of the continuous expansion
of the renewable energy production capacity which occurs all over this phase.

Assuming a strictly positive minimal price of equipment into renew-
able energy production, the development of the renewable energy alternative
may follow two possible scenarios. Under certain conditions, it should start
strictly after that time when the energy price would be higher than the re-
newable energy variable marginal cost and strictly before the energy price
could cover the full marginal cost of the renewable alternative, that is the
sum of the variable cost and the minimal rental cost of capital equipment.
Under other conditions it is also possible that the energy industry should
start to invest into the renewable alternative before using it, waiting for the
energy price to reach the variable average production cost level of renewable
energy. In these two scenarios, the firms face negative returns over their
investments in the early stage of the energy transition. This is explained
by the permanent energy price increase during the transition combined with
increasing investment marginal costs of their equipment efforts.

The investment into renewable energy should first rise and then begin to
decrease strictly before the depletion of the non renewable resource. After
the exhaustion of the non renewable resource, the renewable energy sector
will continue to expand its production capacity permanently up to some long
run efficient renewable energy production capacity level. This implies that
it is never optimal for the renewable energy sector to hold this efficient long
run capacity level at the end of the energy transition.

We also derive a closed form solution for the model at hand. It shows
that the characteristics of the equilibrium investment policy into renewable
energy may be in fact largely independent from the initial scarcity of the
non renewable resource. This will be the case in particular in a scenario
where the non renewable resource is sufficiently abundant for a first phase
of only non renewable resource exploitation to arise before the beginning of
the development of renewable energy. More precisely, we show in this case
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that a higher availability of the non renewable resource will translate farther
in time the same renewable energy investment path, thus resulting into the
same level of accumulated capacity in producing renewable energy at the
depletion time of the non renewable resource. Thus the expansion path of
renewable energy use after the exhaustion of the non renewable resource will
be independent from the non renewable resource scarcity. This feature of the
investment plan applies both in a scenario of early building of the production
capacity before entering the production stage or in a scenario of simultaneous
building of the capacity together with the development of the production of
renewable energy.

The paper is organized as follows. We describe in the next section a
model of transition between a non renewable resource and a renewable re-
source facing capacity development constraints. Under our constant variable
marginal costs assumption it turns out that the non renewable resource will
be exhausted in finite time. Thus we proceed in section 3 to the descrip-
tion of the ultimate phase of only renewable energy production. This last
time phase may be described using the phase diagram technique developed
by Treadway (1969). Section 4 examines the features of the transition phase
between non renewable and renewable energy, focusing upon the description
of the investment path into the expansion of renewable energy. Section 5 pro-
vides a closed form solution to the model and shows that the characteristics
of the investment policy into renewable energy are in our model largely in-
dependent from the scarcity of the non renewable resource. The last section
6 concludes.

2 The model

We consider an economy with access to two different energy sources. The
first one is a non renewable resource, say ’oil’, available initially in amount
X0 and we denote by x(t) the instantaneous rate of oil extraction and by
X(t) the current oil availability, so that Ẋ(t) = −x(t). Oil extraction, re-
finement and processing results into the provision of oil energy services, the
amount of energy services being normalized as to be equal to x(t) for the sake
of simplicity. The provision of oil energy services to the users incurs a con-
stant unit and marginal cost cx. We dispense from considering the possible
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pollution problems raised by burning oil to produce energy.

The second energy source is a renewable resource, let say ’solar’. To pro-
duce solar energy, the industry has to build a dedicated production capacity,
let say a ’solar panels’ stock, starting from a zero initial level of equipment.
Let K(t) be the installed solar production capacity at time t and assume
that K(0) = 0. There is no installed solar production capacity initially. We
denote by k(t) the purchase of equipment into solar production capacity.

We assume that maintaining the production capacity has a cost cK per
unit of maintained capacity. The firms have thus to decide over a mainte-
nance effort. We assume that any fraction of the capital stock which do not
benefit from maintenance is definitively lost. Thus we should introduce the
possibility of a negative adjustment of the capital stock by applying mainte-
nance effort to only a fraction of the installed capacity. We shall denote by
Km(t) the capacity benefiting from maintenance at time t, Km(t) ≤ K(t).
Since the fraction K −Km would be definitively lost, the capital dynamics
is described by the following equation:

K̇(t) = k(t)− (K(t)−Km(t))

Each unit of maintained capacity is assumed to be able to deliver one unit of
renewable energy services. Thus denoting by y(t) the flow of such services,
y(t) ≤ Km(t) ≤ K(t).

The delivery of solar energy services to the users incurs a constant unit
and marginal cost cy. The solar industry has to purchase its equipment over
a specific market e.g. the solar panels market. Let pK(t) be the price of solar
panels and denote by ks(pK) the supply curve of solar panels. This supply
curve would identify to the marginal cost curve of the solar panel industry in
a competitive situation. We assume that there exists some positive p0K > 0
such that ks(p0K) = 0. This is equivalent to assuming that the marginal
cost of producing solar panels is positive even for the first produced unit
of equipment. We introduce this feature for the sake of realism but it will
appear that it allows for a much better understanding of the investment logic.
We consider an increasing supply curve (or an increasing marginal cost curve
of producing solar panels), that is ks(p) : [p0K ,∞)→ R+ is a continuous and
differentiable function such that dks(pK)/dpk > 0 and ks(p0K) = 0.
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Two remarks are in order at this stage. Firstly, as pointed out in the
introduction, investment theory with adjustment costs (e. g. Lucas, 1967)
distinguishes between two kinds of adjustment costs: external costs associ-
ated to the purchase of new capital equipment and internal costs identified to
specific costs of putting new equipment into a productive state together with
the already existing installations. Our formulation neglects these internal
costs, the firms being able first, to run freely any level of available capacity
at any time and second, to incorporate new equipment without incurring spe-
cific installation costs. We also dispense from considering technical advances
in the design of solar panels. A full account of the consequences of such
advances over the capital management requires to design a vintage capital
model, an interesting research avenue we shall not pursue here.

Secondly, it may be possible that pK(t) < cK . In such a case the in-
dustry should not apply any maintenance effort, scrap entirely the existing
production capacity at time t to purchase a new one. We shall rule out such
a possibility by assuming that cK < p0K . Thus it will always be in the inter-
est of the industry to apply at least some maintenance effort and keep some
fraction of the existing production capacity.

The energy services delivered by the oil energy industry and the solar
energy industry are perfect substitutes for the users. Let q(t) = x(t) + y(t)
be the aggregate energy supply by the energy sector. p denotes the energy
price and pd(q) is the inverse demand function, pd(q) : R+ → R+ is continuous
and differentiable with dpd(q)/dq < 0 and limq↓0 p

d(q) = +∞.

In the context of capacity investment costs, the both cases of a cheaper
solar energy with respect to oil or a cheaper oil than solar appear worth a
study. We shall concentrate upon the case of a cheaper oil energy that is
assume: cx < cy. Thus absent any depletion of the oil resource, there should
be no development of solar energy. It is the pure logic of resource exhaustion
which will motivate the expansion of the solar energy alternative.

We assume that the energy industry is composed of competitive firms
having access to the same technologies for energy services provision. Hence
it does not matter to assign specialization into oil or solar energy generation
for a given firm. Facing the same energy and solar equipment markets condi-
tions, the firms should take identical decisions regarding output and inputs
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purchase policies. At the equilibrium, their solar energy investment policy
will be affected by the levels and dynamics of equipment price. The supply
curve of solar equipments having been supposed to be upward sloping, an in-
creased speed of equipment accumulation will result in price increases upon
the equipment market. Hence market behavior will mimic at the equilibrium
the features of the convex cost structure one finds in the standard investment
models with internal adjustment costs.

Assuming perfect competition over both the energy and solar equipment
markets, the energy sector has to design supply plans {(x(t), y(t)), t ≥ 0}
and a solar capacity investment and maintenance plan {(k(t), Km(t)), t ≥ 0}
maximizing the discounted profit stream of the industry. We denote by r the
constant level of the interest rate. Formally the energy sector solves:

max
x(t),y(t),k(t),Km(t)

∫ ∞
0

{p(t)(x(t) + y(t))− cxx(t)− cyy(t)

−pK(t)k(t)− cKKm(t)} e−rtdt

s.t.

Ẋ(t) = −x(t) X(0) = X0 given

K̇(t) = k(t) +Km(t)−K(t) K(0) = 0

x(t) ≥ 0 , y(t) ≥ 0 ,

k(t) ≥ 0 , Km(t)− y(t) ≥ 0 , K(t)−Km(t) ≥ 0

.

The Lagrangian of this problem is (dropping time dependency of the variables
for the ease of reading):

L = p(x+ y)− cxx− cyy − pKk − cKKm − λXx+ λK(k +Km −K)

+γxx+ γyy + γkk + γK(Km − y) + γm(K −Km)

Since the state variable X(t) does not enter inside the expression of the
Lagrangian we can infer that in any solution : λX(t) = λX(0)ert. Denote :
λX(0) ≡ λX . We obtain the following system of first order conditions:

Lx = 0 =⇒ p = cx + λXe
rt − γx (2.1)

Ly = 0 =⇒ p = cy + γK − γy (2.2)
Lk = 0 =⇒ pK = λK + γk (2.3)
LKm = 0 =⇒ cK + γm = λK + γK (2.4)

λ̇K = rλK − LK =⇒ λ̇K = rλK + λK − γm , (2.5)
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together with the usual complementary slackness conditions and the transver-
sality conditions:

lim
t↑∞

λXX(t) = 0 , lim
t↑∞

e−rtλK(t)K(t) = 0 . (2.6)

We first show that in any equilibrium, the industry should apply main-
tenance to the whole existing capital stock. Suppose to the contrary that
during some time interval ∆, the industry decides both to not fully use the
maintained capacity to produce solar energy together with applying mainte-
nance to only a fraction of the capital stock, that is y(t) < Km(t) < K(t),
t ∈ ∆. Then it results from the complementary slackness conditions that
γm(t) = γK(t) = 0, t ∈ ∆. But this would imply from (2.4) that λK(t) = cK
should be constant while (2.5) would imply that λ̇K = (1+r)λK(t) > 0, hence
a contradiction. Next, if the industry decides to fully exploit the maintained
capacity while not applying maintenance to the whole capital stock, that is
if y(t) = Km(t) < K(t), then γm(t) = 0 while γK(t) ≥ 0. Thus (2.4) would
imply that pK(t) = cK − γK(t) ≤ cK , a possibility that we have previously
excluded by assuming that cK < p0K ≤ pK(t). It will prove convenient to
define βK ≡ γK − cK = γm − λK and rewrite (2.2)-(2.5) as:

p = cy + cK + βK (2.7)
λ̇K(t) = rλK(t)− βK . (2.8)

βK stands as the net opportunity cost of the capacity constraint, that is net
of the maintenance costs. Note that βK(t) = −cK in a case where γK(t) = 0,
that is if y(t) < K(t), the industry does not fully exploit the existing solar
production capacity, and βK(t) > −cK in the reverse case.

The net value of an investment into solar capacity λK(t) has to be care-
fully distinguished from the net opportunity cost of the capacity constraint
βK(t). The second only measures the burden of the capacity constraint at
some time t, a static measure of the severity of the constraint, while the
first is measuring the contribution of an extra solar production capacity over
the whole time interval [t,∞) and thus takes fully into account the whole
equilibrium dynamics. The transversality condition provides a simple link
between these static and dynamics measures of the value of an investment.
Note that (2.8) is equivalent to ˙(λK(t)e−rt) = −βK(t)e−rt. Under constant
average costs, the oil reserves will be exhausted in finite time, implying that
the economy will have to rely only upon solar energy in the very long run.
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This in turn implies that limt↑∞K(t) > 0 and through the transversality
condition that limt↑∞ λK(t)e−rt = 0. Thus integrating over [t,∞) results in:

lim
τ↑∞

λK(τ)e−rτ − λK(t)e−rt = −
∫ ∞
t

βK(τ)e−rτdτ =⇒

λK(t) =

∫ ∞
t

βK(τ)e−r(τ−t)dτ

The net current value of an investment into capacity building λK(t) at time t
identifies with the discounted sum of the instantaneous net opportunity costs
of the capacity constraint from t onwards.

Before turning towards a detailed analysis of the implications of the nec-
essary conditions, let us sketch a reasonable guess solution to the problem.

• Since cx < cy and solar development has to be started from scratch,
the non renewable resource will be put into exploitation right from the
beginning.

• Since the marginal cost of oil energy services has been assumed to be
constant, oil should be depleted in finite time.

• There cannot be an abrupt transition from oil to solar energy as in the
textbook Herfindahl model since solar capacity building is costly and
the supply curve of solar equipment has been assumed to be upward
slopping. Hence, contrarily to the Herfindahl model, there should exist
a phase of simultaneous exploitation of both solar and oil energy, de-
spite the fact that their respective variable marginal costs are constant
and that cx < cy by assumption.

• After oil depletion, only the solar energy sector will remain active.
Depending upon the previously accumulated production capacity, it
may or not be the case that capacity will continue to expand. In the
first case, energy supply should increase while the energy price should
decline over time.

• Depending upon the cost advantage of oil with respect to solar and
the other features of the model, it may or not be the case that the
investment into solar production capacity building will be delayed in
time, opening the room for a first phase of only oil exploitation before
the transition towards solar energy.
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• In this last case, it appears possible that the industry should invest into
solar production capacity before using it to produce renewable energy.

These features suggest the following study plan. We shall first describe
the last phase of only solar energy use. We shall give a necessary condition
for a permanent investment into solar capacity building during this phase.
We then show that under this condition, investment should slow down while
the solar energy production capacity converges asymptotically towards a long
run level K̂, defined as the solution of : pd(K) = rp0K+cy+cK . Both the value
of the capacity λK and the net opportunity cost of the capacity constraint
βK decrease over time down to the levels p0K and rp0K respectively.

Next we turn towards the transition phase form oil to solar energy. We
shall give a necessary condition for this transition phase to be composed
of a first phase of only oil exploitation followed by a phase of joint use of
both energy sources. During the whole transition process the price of energy
should increase in a Hotelling way, that is: p(t) = cx + λXe

rt. The aggregate
use of energy should thus decrease while solar energy production, if in use,
should increase with the installed solar production capacity, meaning that
oil use should decrease in a higher proportion inside the total energy mix.
We also show that the investment path into solar equipment has an inverted
U shape, characterized by a first phase of increasing investment rates and
then by a decrease in the speed of solar capacity expansion. Investment into
solar capacity should begin to decrease strictly before the depletion of the
oil reserves and will continue to decrease afterwards as noted before. If solar
energy development is delayed then investment should start at the minimal
level. It will start at some strictly positive level in a case of immediate
production of solar energy.

Last, we consider the issue of the optimal timing of solar development in
the case of a delayed introduction of this energy source. We identify two pos-
sibilities. Either the industry begins to expand its solar production capacity
strictly before starting to produce solar energy, either capacity expansion
and solar production begin at the same time. In both cases, the solar in-
dustry bears profit losses at the beginning of the solar capacity expansion
phase. This feature of the profitability plan of solar energy is a consequence
of the Hotelling rule which drives up permanently the energy price before
the depletion of the oil resource together with an upward slopping curve for
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solar equipments. We fully characterize the different possible scenarios by
means of an algorithmic procedure, thus providing a closed form solution to
the present model. It shows that the features of the investment plan into
the renewable energy alternative may be completely independent from the
oil resource scarcity.

3 The pure solar phase

Let the oil reserves be depleted at some time tX > 0. The sole solar energy
industry provides the energy needs over the time interval [tX ,∞) starting
at time tX with a previously accumulated capacity KX . From (2.2) we see
that a necessary condition for the solar energy industry not to be in excess
capacity at time tX is: pd(KX) > cy. Furthermore, the average cost of
holding capacity is given by the maintenance cost cK . Let K̄ be the solution
of pd(K) = cy + cK . Then the solar industry will be in excess capacity at tX
if KX > K̄. Building capacity from a zero initial level being costly for the
solar industry, a previous investment policy resulting at time tX in KX > K̄
cannot be profit maximizing for the industry. Hence we can restrict the
attention to initial levels of the installed capacity such that KX ≤ K̄.

We now give a condition for an investment into capacity building to occur
after tX . Assume no increase in capacity after tX . A slight increase of the
solar production capacity above KX would generate a discounted stream of
marginal profit v(KX) in current value at tX at the equilibrium over the
energy market:

v(KX) =

∫ ∞
tX

[pd(KX)− cy − cK ]e−r(t−tX)dt =
pd(KX)− cy − cK

r

Assume that p0K < v(KX). A slight investment after tX would bear a cost
approximatively equal to p0K while generating a benefit v(KX). Thus the
balance sheet of such an investment arbitrage would be positive, leading to
the conclusion that investment should occur after tX . Hence we can conclude
that a sufficient condition for no investment to happen after tX is p0K >

v(KX). Let K̂ be the solution of v(KX) = p0K that is: pd(K) = rp0K +
cy + cK . K̂ is well defined because of the decreasing monotonicity of the
inverse demand function. Then we can conclude from the assumption of a
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decreasing demand that if K̂ < KX < K̄, the industry should maintain the
solar production capacity at the level KX , performing no further investment
into capacity expansion. Since increasing the capacity bears a full marginal
cost, including the resulting extra maintenance cost, at least equal to rp0K+cK
in annual rental terms, the industry will proceed to such an investment only
in a case where the operating marginal profit p− cy covers this minimal cost.
Since KX < K̄ the solar industry is constrained by the installed production
capacity KX , but since KX > K̂, trying to relax the capacity constraint by
investing more would lower profits. Hence a necessary condition for a solar
production capacity expansion above KX after tX is KX < K̂.

At this stage some remarks are in order. We have modeled capacity ex-
pansion as resulting from an irreversible investment process with the possibil-
ity of scraping the capacity in a costless way by not applying maintenance to
the whole capital stock. Alternatively we could have assumed that disman-
tling the capacity could be feasible only through some costly readjustment
process. But such a costly process can be avoided just by using only a frac-
tion of the existing capacity, living idle the rest while not paying the full
maintenance cost. Thus we are not in the standard irreversible investment
framework as studied by Arrow (1968), the constraint k(t) ≥ 0 does not
exclude the possibility of a temporary underuse of the existing capacity. In
such a situation the industry faces the choice of maintaining the existing
productive capacity by paying the maintenance cost over the whole installed
capacity or cut these costs and loose some fraction of the capacity.

In the context of the present perfect foresight model where the demand
for energy has been assumed to be stationary, such an issue cannot not arise
at the equilibrium. Either KX > K̄ and the industry use only the fraction K̄
of KX and pay the maintenance cost only over this capacity level held forever
constant. Either K(t) < K̄ and the capacity constraint binds at K(t). The
installed capacity is in full operation and the maintenance effort applies to
the whole capital stock. Furthermore, the investment profitability argument
is also valid before tX , meaning that starting from a null installed capacity,
the profit maximizing solar industry should not accumulate before tX a ca-
pacity KX above K̂. We can thus dispense from considering the possibility
of dismantling some fraction of the production capacity after tX . Of course
this way of reasoning is only valid because the production capacity is used
to provide some flow of renewable resource energy. In an exhaustible re-
source exploitation problem under adjustment costs, the possibility of excess
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capacity accumulation during the mine life is an important issue2.

Consider now the case KX < K̂. We are going to show that the solar
industry should perform a permanent investment effort into solar equipment
expansion though at a decreasing rate, the installed capacity converging
asymptotically towards K̂. Consider an investment plan into capacity ex-
pansion followed over a time interval ∆k ≡ [tX , t̄). Since k(t) > 0, t ∈ ∆k,
γk(t) = 0, t ∈ ∆k, and thus pK(t) = λK(t). Thus (2.3) and (2.5) result at
the equilibrium over the solar equipment market and the energy market into
the following differential system in (K,λK):

K̇(t) = ks(λK(t))

λ̇K(t) = rλK(t)− pd(K(t)) + cy + cK . (3.1)

(3.1) is a simple non linear differential system which can be studied with the
phase diagram technique. For exposition convenience expand ∆k to [tX ,∞).
Since k(t) > 0 by assumption, K̇(t) > 0 and λ̇K > / = / < 0 depending
upon λK > / = / < v(K(t)) where v(K) ≡ [pd(K) − cy − cK ]/r. v(K) is
the total net marginal surplus in current value from t onwards if the solar
production capacity and hence the solar energy production level would be
kept constant after t. Thus v(K) measures the capacity rent resulting from
a constant capacity level K. Since dpd(q)/dq < 0 and limq↓0 p

d(q) = +∞
under our demand assumption, we get immediately limK↓0 v(K) = +∞ and
dv(K)/dK < 0. Last, there exists K̄ solution of v(K) = 0 and v(K) < 0
for K > K̄. The following Figure 1 illustrates the geometry of the phase
diagram in the (K,λK) plane.

It is easily checked that the saddle branch graphed as a solid bold line on
Figure 1 is the only equilibrium solar capacity path starting from KX < K̂.
There exist two other main types of trajectories solution of (3.1). A first
kind of trajectories initiate under the locus λ̇K = 0 and then move in finite
time above this curve inside a region where λ̇K > 0 and thus k̇ > 0 since
k = ks(λK) and dks(pK)/dpK > 0. Furthermore in this region: pK(k) =

2See Gaudet (1983) for a careful treatment of this problem in the context of the theory
of the mine.
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Figure 1: The Solar Production Capacity Expansion Path after Oil
Depletion.

λK > v(K). Since y(t) = K(t) increases permanently, p(t) decreases thus:∫ ∞
t

e−r(τ−t)[p(τ)− cy − cK ]dτ <

∫ ∞
t

e−r(τ−t)[p(t)− cy − cK ]dτ

=
pd(K(t))− cy − cK

r
= v(K(t))

Thus above the curve v(K):

pK(k(t)) > v(K(t)) >

∫ ∞
t

e−r(τ−t)[p(τ)− cy − cK ]dτ

The marginal cost of an investment into an increase of the capacity would be
higher than the total marginal gain from such an investment which cannot
be profit maximizing.

The other kind of trajectories starts below the saddle branch and then
moves towards the horizontal p0K in finite time. Consider such a trajectory
ending at some capacity level Ka as illustrated upon Figure 1. Let ta be that
time when K(ta) = Ka. Since along such trajectories λK(t) < v(K(t)) we
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get at ta:

λK(ta) = p0K < v(Ka) =

∫ ∞
t

e−r(τ−ta)[pd(Ka)− cy − cK ]dτ

A slight investment effort dk > 0 above 0 would generate a surplus gain
higher than its cost, showing that such a choice of an investment policy into
solar production capacity building could not be efficient for the solar industry.

Hence only remains the trajectory converging in infinite time towards
(K̂, p0K) corresponding to the saddle branch upon Figure 1. Observe that
the long run level of solar capacity, and hence solar energy production, is
the solution of p(K) = cy + cK + rp0K . Thus even in the very long run the
gross marginal surplus from solar energy consumption will be higher than
the marginal cost of solar production. Only in a case where the minimal
marginal adjustment cost p0K would be zero together with the maintenance
costs, the equalization in the long run of the gross marginal surplus to the
variable marginal cost cy would be profit maximizing for the solar indus-
try. We observe also that since λK decreases along the saddle branch and
λK(t) = pK(t) through (2.3), k(t) = ks(pK(t)) should also decrease over
time. λK(t) converging asymptotically towards p0K , k(t) converges towards
ks(p0K) = 0. Hence investment into capacity building follows a smooth de-
creasing pattern towards zero. Since k(t) > 0, t ≥ tX along the saddle
branch, we also conclude that the unique profit maximizing policy after tX ,
starting from KX < K̂ is to perform a permanent investment effort k(t) > 0
into solar capacity expansion. At the equilibrium over the energy market, the
provision of solar energy will rise while the energy price will decrease, while
both at decreasing rates since K(t) decelerates. The following proposition
summarizes our findings.

Proposition P. 1 Consider a permanent equilibrium phase of only solar en-
ergy production, [tX ,∞), tX > 0, oil being exhausted, then:

1. The solar production capacity cannot extend above the level K̂ solution
of: pd(K) = rp0K + cy + cK.

2. For an available initial solar production capacity KX < K̂ at the begin-
ning of the phase tX , the solar energy sector should permanently expand
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its production capacity K(t) towards K̂, a level which will be attained
in infinite time.

3. During this capacity expansion phase, the investment level k(t) into new
solar equipment will permanently decrease, converging down to zero in
the very long run.

4. The equilibrium price of solar equipment pK(t) decreases and converges
towards p0K.

5. The production of solar energy is given by y(t) = K(t), the capacity
constraint binding all along the phase. Solar energy provision increases
permanently towards ŷ = K̂. The energy price decreases and converges
down to ĉ ≡ rp0K + cy + cK > cy. y(t) increases at a decreasing rate
while p(t) decreases also at a decreasing rate.

4 Energy transition from oil to solar

Before tX , the economy consumes the oil resource and we get from (2.1):
p(t) = cx + λXe

rt. The equilibrium price of energy should increase over time
in a Hotelling way. Since γK(t) ≥ 0, inspection of (2.2) reveals that there
should be no use of solar energy whence p(t) < cy, that is if the energy price
is too low to cover the variable cost of production of the solar alternative.

This does not imply that the solar industry should not accumulate any
solar production capacity if p(t) < cy. With sufficiently low interest rate
and maintenance costs and a sufficiently steep supply curve of solar panels,
it may be optimal for the industry to start investing even before the energy
price can cover the solar variable production cost. On the other hand, a high
level of the minimal cost of investment p0K and of the maintenance costs cK
may delay the development of the solar energy alternative until a sufficient
positive gap between the energy price and the variable marginal production
cost of solar energy has been attained.

In all cases, the presence of convex capacity adjustment costs prevents
an instantaneous transition from oil to solar energy, implying the existence
of some time phase of joint use of the two energy sources. Denote by ty the
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beginning of the phase of joint use of oil and solar energy and by tK the
beginning of the investment phase into solar production capacity. Since it
has been assumed that K(0) = 0, solar energy use requires some productive
capacity and hence tK ≤ ty. Depending upon the shapes of the energy de-
mand function and the supply function of solar equipment together with the
other model parameters, the equilibrium transition from oil to solar energy
may follow four possible scenarios.

• A three phases scenario where 0 < tK < ty composed of a first phase
[0, tk) of only oil consumption without investment in the solar alter-
native. This phase is followed by a phase [tK , ty) of solar investment
without solar energy production before a phase [ty, tX) of joint use of
both energies extending until the depletion of the oil reserves.

• A two phases scenario where 0 < tK = ty composed of a first phase
[0, ty) of only oil consumption without solar production capacity devel-
opment followed by a phase [ty, tX) of joint use of oil and solar energy.

• A two phases scenario where 0 = tK < ty with immediate development
of the solar production capacity without use of solar energy before the
the joint energy use phase [ty, tX).

• A one phase scenario [0, tX) where 0 = tK = ty during which the
economy uses permanently the two available energy sources until the
exhaustion of oil.

Before proceeding to the description of the solar energy development plan
in these various scenarios, let us sketch the main features of the price and
quantity dynamics during the energy transition. As shown before, the en-
ergy price permanently increases implying that the total energy consumption
should decline over time. Once solar energy is introduced, the production
capacity accumulation will induce an increased use of solar energy inside the
energy mix, oil consumption decreasing at a higher rate than total energy
consumption. Contrasting with the Herfindahl textbook model, there will
not be a downward jump in the use of oil at the depletion time tX . Under
convex adjustment costs, or equivalently an upward bending supply curve
of solar equipment, oil consumption will fade over time in a continuous way
and x(tX) = 0 while q(tX) = y(tX) = K(tX) = KX following our previ-
ous notations. Note that in the case 0 < tK < ty, the use of solar energy
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jumps up from zero to the available capacity level at time ty, K(ty). Thus,
oil consumption should make a parallel downward jump at ty, total energy
consumption having to be time continuous. Furthermore p(ty) = cy implies
that γK(t) = 0 before ty.

During the phase of joint use of both energy sources, p(t) = cy + γK(t)
through (2.2) implies that γK(t) increases over time and thus that βK(t)
should increase. Such an increase of the static opportunity cost of the solar
production capacity does not imply an increase of the marginal benefit of an
investment into solar production capacity λK(t) since λ̇K(t) = rλK(t)−βK(t)
can be positive only if λK(t) > βK(t)/r. A monotonous increase of the static
opportunity cost does not translate into a monotonous evolution of the value
of an investment into solar energy, a feature we are going to examine now in
more detail.

Consider first the dynamics of the investment plan after ty. Making use
of (2.4), (2.5) together with the expression of γK(t) resulting from (2.2), we
obtain for t ≥ ty:

λ̇K(t) = rλK(t) + cy + cK − cx − λXert .

Integrating this equation over a time interval [t0, t), t0 < t, we get:

λK(t) = λK(t0)e
r(t−t0) +

cy + cK − cx
r

(
er(t−t0) − 1

)
− λXert(t− t0) .

(4.1)

Differentiating with respect to time results in:

λ̇K(t) = π(t0)e
r(t−t0) − rλXert(t− t0) ,

where π(t0) ≡ rλK(t0)+cy+cK−cx−λXert0 . This defines a unique t̄ solution
of λ̇K(t) = 0 that is of:

t = t0 +
π(t0)

λXert0
.

t0 ≤ t implies that π(t0) ≥ 0 that is: p(t0) ≤ cy+cK +rλK(t0). In the reverse
case, λ̇K(t) < 0, for any t > t0. Furthermore, differentiating once again with
respect to time gets: λ̈K(t) = r(λ̇K(t)−λXert) thus λ̈K(t̄) < 0, which implies
that t̄ is unique if it exists.
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Remark first that investment into solar energy should take place before
that time t at which p(t) = rp0K + cy + cK . If t < tK , p(tK) > cy + cK + rp0K
and λK(tk) = p0K both imply that π(tK) < 0 and thus λ̇K(t) < 0, t ≥ tK . But
positive investment after tK requires that λK(t) > p0K , hence a contradiction.
t is the upper bound over possible investment starting time tK . We have to
consider two possibilities:

• Either tK = ty and investment begins with solar energy production, in
which case: tK = ty < t and cy ≤ cx + λXe

rtK .

• Either tK < ty and investment begins strictly before the phase of joint
use of solar and oil energy, ty being the solution of cy = cx + λXe

rt.

We have also to consider the possibility of an immediate start of the solar
development plan from t = 0, that is either 0 = tK < ty or either 0 = tK = ty.
Consider first the case 0 < tK ≤ ty. Then the investment plan should expe-
rience a smooth start at tK and λK(tK) = p0K . If tK < ty, p(tK) < cy and the
industry invests into solar production capacity before beginning to produce
solar energy. At time ty, p(ty) = cy < cy + cK + rp0K < cy + cK + rλK(ty).
Thus π(ty) > 0 and λK(t) increases over time during the interval [ty, t̄) before
decreasing after t̄. If tK = ty, then ty < t̄ implies that p(ty) < cy + cK + rp0K
but cy ≤ p(ty) since γK(t) has to be non negative at ty. As in the preceding
case, the investment plan should have an inverted U shape after ty being com-
posed of a first increasing phase before t̄ followed by a decreasing phase after
t̄. Since pK(t) = λK(t), ks(pK) = ks(λK) implies that at the equilibrium,
the investment level k(t) increases before t̄, corresponding to an accelerated
accumulation of solar production capacity, K(t). The investment level at-
tains a maximum at t̄ before decreasing, corresponding to a decelerating solar
production capacity development pace after t̄.

This scenario is only valid in a case where the oil resource would not be
exhausted before t̄. But since the energy price is a continuous time function
at the equilibrium, we get also at time tX : (p(tX) − cy − cK)/r = v(KX).
This implies that λ̇K(t) should be continuous at time tX , showing that λK(t)
is a continuous and time differentiable function around tX . We have shown
in section 3 that, from tX onwards, λK(t) should follow a decreasing time
pattern converging asymptotically towards p0K provided that KX < K̂, a
point we check below. This implies that λ̇K(tX) < 0. Hence we can conclude
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that t̄ < tX . The oil resource has to be depleted only after the investment
policy turning point t̄.

If tK < ty, Km(t) = K(t), t ∈ [tK , ty) implies that γm(t) > 0 while
y(t) = 0 implies that K(t) = Km(t) > y(t) and hence γK(t) = 0. Thus (2.4)
implies that cK + γm(t) = λK(t) that is: λK(t) − γm(t) = cK . Inserted into
(2.5), this results in λ̇K(t) = rλK(t) + cK . Thus λK(t) increases with k(t)
during the first solar investment phase before solar production, corresponding
to an accelerating trend into solar production capacity building.

In the case 0 = tk ≤ ty, the initial investment level k(0) is adjusted in a
bang bang way to some strictly positive level. Depending upon the size of this
initial jump, it may be the case that the solar investment plan exhibits the
inverted U shape previously described. But if λK(0) is such that π(0) < 0,
that is if cy + cK + rλK(0) < cx + λX , the rate of investment into solar
capacity building will permanently decrease before the complete transition
towards solar energy.

It remains to check that KX < K̂, that is the solar production capacity
development during the transition phase between oil and solar energy should
not end at tX with an available capacity KX higher than K̂. This requires
that λK(tX) ≤ p0K . Since we have shown that during the transition phase,
λK(t) first increase before t̄ and then decreases after t̄, this in turn implies the
existence of a point of time t̃, t̄ < t̃ ≤ tX such that λK(t̃) = p0K and λK(t) >
p0K for t̄ < t < t̃. Since λK(t) should decrease before t̃, p0K < (p(t̃)−cy−cK)/r.
But since the energy priceshould increase up to tX and remain constant
afterwards, the solar energy production capacity being no more expanded,
p(t) > p(t̃), t > t̃. Hence a slight investment above zero at time t̃ would
generate a discounted benefit at this time higher than its cost, contradicting
the optimality of such a capacity investment plan. The following figure 2
illustrates the dynamics of investment into capacity building in terms of the
dynamics of the dual variables (λK(t), βK(t)). We can summarize as follows
our findings so far:

Proposition P. 2 During the transition from oil to solar energy:

• The energy price increases over time in a Hotelling way and total energy
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Figure 2: Dynamics of λK and βK(t) if 0 < tK = ty.

consumption declines.

• The complete transition towards solar energy is preceded by a time phase
of simultaneous exploitation of both oil and solar energy.

• Solar energy use rises during this time phase with the solar production
capacity and the solar energy share increases inside the energy mix.

• At tX , the depletion time of the oil reserves, x(tX) = 0 and q(tX) =
y(tX) = K(tX) ≡ KX .

• Depending upon the model parameters, investment into solar production
capacity may start before the beginning of the use of solar energy. In
this case, solar energy is introduced at that time ty when the energy
price reaches the variable cost level of producing solar energy, that is
p(ty) = cy.

• It may also be the case that solar production and investment begin at
the same time ty in which case p(ty) ≥ cy.

• In both cases, solar energy development must occur before the energy
price has reached the level cy + cK + rp0K, implying that the energy
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industry should experience negative returns over their investments in
the early stage of the energy transition.

Furthermore, the investment plan into solar production capacity has the
following characteristics:

Proposition P. 3 During the solar production capacity development phase
[tK , tX):

• If tK > 0, the marginal benefit of investing into solar energy has an
inverted U shape, being first increasing and then decreasing. The in-
vestment rate into solar equipment begins to decrease strictly before the
depletion of the oil stock.

• The price of the solar equipment pK(t) first rises at the beginning of
the solar capacity building phase and then strictly decreases before the
complete transition towards solar energy.

• If solar investment starts immediately at a sufficiently high strictly pos-
itive level, that is if tK = 0, it is possible that this shape reduces to a
decreasing pattern of investment together with a declining trend of the
equipment price.

• The solar capacity constraint binds all along the phase of joint use of
both energies. The net instantaneous opportunity cost of the capacity
constraint in rental terms, βK(t)/r, permanently increases during this
phase, being first lower than the equilibrium equipment price pK(t) at
the beginning of solar production capacity development and then higher
than pK(t) at the end of the energy transition.

• The capacity building process during the transition phase results into
an available capacity at time tX , KX being strictly lower than the eco-
nomically maximum capacity level K̂.

It remains to examine several issues. We have to check the domain of
validity of the various scenarios. Secondly, we have to show that the policies
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previously described are indeed profit maximizing before the complete transi-
tion towards solar energy. We are going to describe an algorithmic argument
able to address these issues and provide a closed form solution to the present
model. The solving procedure will make appear that the characteristics of
the solar energy investment plan may be independent from the size of the oil
reserves. More precisely, we show that with a sufficiently high initial level of
oil reserves, the length of the solar development phase, T ≡ tX − tK , and the
accumulated capacity at the end of the transition phase, KX , do not depend
upon X0, the initial stock of the non renewable resource.

5 Characterizing the profit maximizing scenario
at the equilibrium

Consider the most complex case of a four phases scenario. Considering first
the phase [tK , ty), we know that λ̇K = rλK + cK . Integrating this equation
over [tK , t), t ≤ ty, we obtain:

λK(t) = er(t−tK)p0K +
cK
r

(
er(t−tK) − 1

)
t ∈ [tK , ty) . (5.1)

During the transition phase between oil and solar energy [ty, tX), λK(t)
is given by:

λK(t) = er(t−ty)λK(ty) +
cy + cK − cx

r

(
er(t−ty) − 1

)
− λXert(t− ty) .

Since λK(t) is a continuous time function at t = ty:

λK(ty) = er(ty−tK)p0K +
cK
r

(
er(ty−tK) − 1

)
,

thus:

λK(t) = p0Ke
r(t−tK) +

cK
r

(
er(t−tK) − 1

)
+
cy − cx
r

(
er(t−ty) − 1

)
−λXert(t− ty) . (5.2)
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Next k(t) = ks(λK(t))) during the two phases [tK , ty) and [ty, tX) consid-
ering (2.3). Since K(tK) = 0:

KX = K(tX) =

∫ tX

tK

k(t)dt =

∫ tX

tK

ks(λK(t))dt .

In this scenario, solar energy is introduced once the energy price has reached
the level cy, hence:

cy = cx + λXe
rty .

At the equilibrium, the energy price path and hence the energy consumption
path must be continuous time functions at tX . This requires that x(tX) = 0
and q(tX) = y(tX). Since the capacity constraint binds at tX , y(tX) =
K(tX) ≡ KX and at the equilibrium:

p(tX) = pd(KX) = cx + λXe
rtX .

Denote by λXK(K) the implicit equation of the saddle branch in the space
(K,λK) linking λK to the installed capacity K during the last pure solar
phase [tX ,∞). Since λK(t) is a time continuous function at tX and K(t)
is also a time continuous function at tX , λK(tX) = λXK(K(tX)) = λXK(KX).
Thus making use of (5.2) evaluated at tX :

λXK(KX) = λK(tX) .

Last, the oil reserves have to be exhausted during the time interval [0, tX),
that is:

X0 =

∫ tX

0

x(t)dt =

∫ tX

0

q(t)dt−
∫ tX

ty

y(t)dt =

∫ tX

0

qd(p(t))dt−
∫ tX

ty

K(t)dt .

Since K̇(t) = k(t) and K(ty) ≡ Ky, we obtain for t ∈ (ty, tX):

K(t) = Ky +

∫ t

ty

k(τ)dτ

Hence: ∫ tX

ty

K(t)dt = Ky(tX − ty) +

∫ tX

ty

∫ t

ty

k(τ)dτdt

Inverting the integration order:∫ tX

ty

K(t)dt = (tX − ty)
∫ ty

tK

k(t)dt+

∫ tX

ty

k(t)(tX − t)dt .
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It appears that in a four phases scenario, the vector of variables (tK , ty, tX , KX , λX)
must be solution of the following system of five conditions:

KX =

∫ ty

tK

ks(λK(t)dt+

∫ tX

ty

ks(λK(t))dt (5.3)

cy = cx + λXe
rty (5.4)

pd(KX) = cx + λXe
rtX (5.5)

λXK(KX) = λK(tX) (5.6)

X0 =

∫ tX

0

qd(cx + λXe
rt)dt− (tX − ty)

∫ ty

tK

ks(λK(t))dt

−
∫ tX

ty

ks(λK(t))(tX − t)dt (5.7)

Note that once this vector of variables has been computed, the characteriza-
tion of the scenario is complete. λX determines the energy price trajectory
and hence the oil exploitation plan during the first phase [0, tK). tX and KX

both determine the whole characteristics of the last pure solar phase [tX ,∞)
in terms of solar energy consumption, energy price and capacity development
path.

Nevertheless, it may be checked that the system (5.3)-(5.7) is not of full
rank by computing the determinant of the corresponding linearized system.
Considering the sub-system (5.3)-(5.6), Appendix A.1 shows that tK and tX
are functions of λX such that: dtK/dλX = dtX/dλX = −1/(rλX) < 0, hence
the length tX − tK is independent of λX while KX is also independent from
λX . The same holds in a three phases scenario where 0 < tK = ty.

This suggests the following solving strategy. Assume tK = 0, that is take
the lower bound for possible values of tK and set λK(0) = p0K , that is consider
a smooth start of the investment process from t = 0. Denote by T ≡ tX− tK ,
the length of the development phase of solar production capacity before the
depletion of the oil reserves. In the case tK = 0, T = tX . Then solve the
following subsystem in (T, λX , KX):

KX =

∫ T

0

ks(λK(t))dt (5.8)

pd(KX) = cx + λXe
rT (5.9)

λXK(KX) = λK(T ) (5.10)
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We check in Appendix A.1 that the above system has a unique solution
(T,KX , λ

0
X). We face two possibilities:

• Either cx + λ0X < cy and in this case, tK < ty. The optimal path of
solar energy development before tX is split in two successive phases, a
phase [tK , ty) with solar capacity building without production of solar
energy followed by a phase [ty, tX) of joint investment and use of solar
energy.

• Either cx + λ0X ≥ cy and in this case tK = ty, investment into solar
production capacity occurs simultaneously with the rise of solar energy
inside the energy mix and ty is defined by p(ty) = cx + λ0X .

Note that this feature of the profit maximizing development plan of solar
energy does not depend upon the oil resource scarcity and results from the
shapes of the energy demand function, the supply function of solar panels,
the variable energy production costs and the interest rate.

We check also in Appendix A.1 that the oil stock constraint defines in
a unique way λX as a decreasing function of X0, a function we denote by
λX(X0). If λX < λ0X then tK > 0 and λXe

rtK = λ0X defines tK and hence
tX = T + tK . Taking into account our previous description of the solar
energy development plan, we conclude that if cx + λ0X < cy, the optimal
scenario is a four phases scenario, with a first phase [0, tK) of only oil energy
without solar development followed by two phases [tK , ty), [ty, tX) of solar
development before the depletion of the oil reserves and concluded by the
last phase [tX ,∞) of pure solar energy. Conversely, if cx + λ0X > cy, then
the phase [tK , ty) vanishes and the optimal path reduces to a three phases
scenario with a common development of solar production infrastructure and
solar energy production. Note that in this situation, solar development will
take place after that time when the energy price p(t) reaches the level cy of
the variable cost of solar energy production. Let X0

0 be the unique solution
of λX(X0) = λ0X . Since λX(X0) is a decreasing function we conclude that the
above scenarios will be valid iff X0

0 < X0.

In the reverse case X0 < X0
0 , λ0X < λX and tK = 0. A scarcer oil

resource induces an immediate development of the solar energy alternative.
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If cx + λX < cy then ty > 0 and the optimal path is a three phases scenario.
During the first phase [0, ty), the solar industry invests into capacity building
without producing solar energy. The second phase [ty, tX) is a phase of joint
use of oil and solar energy together with a continuous investment into solar
production capacity. During the last phase [tX ,∞) the economy uses only
solar energy. In the reverse case λX + cx > cy, both tK and ty are reduced to
zero. The optimal path is a two phases scenario with a first phase of joint use
of oil and solar energy sources before the transition towards pure solar energy.
In both scenarios k(0) > 0, meaning the the solar industry starts immediately
to invest at a strictly positive level, the equilibrium price of solar panel being
strictly higher than p0K . Setting tK = 0 and λK(0) > p0K , the system (5.3)-
(5.7) becomes of full rank and determines the vector (ty, tX , KX , λX , λK(0))
and hence pK(0) in the case cx + λX < cy. In the reverse case, ty is reduced
to zero and the system:

KX =

∫ tX

0

ks(λK(t))dt (5.11)

pd(KX) = cx + λXe
rtX (5.12)

λXK(KX) = λK(tX) (5.13)

X0 =

∫ tX

0

qd(cx + λXe
rt)dt−

∫ tX

0

ks(λK(t))(tX − t)dt (5.14)

defines the solution vector (tX , KX , λX , λK(0)).

The following proposition summarizes these findings.

Proposition P. 4 Let (T,KX , λ
0
X) be the unique solution of the system (5.8)-

(5.10) and let X0
0 be the unique solution of λX(X0) = λ0X . Then:

1. If X0
0 < X0, the optimal path begins with a first phase [0, tK) of only oil

production without investment into the solar energy alternative and:

• If λ0X < cy−cx, then tK < ty and the energy transition is composed
of a first phase [tK , ty) of investment into solar capacity without
solar energy production followed by a phase [ty, tX) of joint use
of both energy sources. tK is defined by p(tK) = cx + λ0X , ty by
p(ty) = cy and tX = T − tK.
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• If λ0X > cy − cx, then tK = ty and the energy transition is reduced
to a single phase of joint production from both energy sources until
oil depletion. ty solves p(ty) = cx + λ0X > cy and tX = T − ty.

2. If X0
0 > X0, the development of the solar energy alternative starts

immediately from t = 0 meaning that tK is reduced to zero and:

• If λ0X < cy− cx, then ty > 0 and the energy transition is composed
of a first phase [0, ty) of investment into solar capacity without
solar energy production followed by a phase [ty, tX) of joint use of
both energy sources. ty is defined by p(ty) = cy and (tX , KX , λX , λK(0))
is the unique solution of the system (5.3)-(5.7) when tK = 0.

• If λ0X > cy − cx, then tK = ty = 0 and the energy transition is re-
duced to a single phase of joint production from both energy sources
until oil depletion. (tX , KX , λX , λK(0)) is the unique solution of
the system (5.11)-(5.14).

The following Figure 3 illustrates the energy price dynamics and the solar
equipment price dynamics in a case where X0

0 < X0 and tK = ty.
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Figure 3: Energy price and solar equipment price dynamics.
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The peak price of energy is attained at the depletion time of oil. The
energy price decreases continuously after oil depletion. It is noteworthy to
remark that such a price shape may be observed in learning by doing models
of solar energy use. Models of investment into alternative energy sources
under adjustment costs can thus generate analogous shapes of the energy
price path after oil depletion than learning models.

The Proposition P.4 shows that the features of the solar development
policy may be largely independent from the availability of the non renew-
able resource with sufficiently high initial oil resource endowments. Since a
smooth start of investment into solar capacity results from the assumption
of an upward sloping supply curve, both K(ty) and k(ty) are set to zero in
any scenario of this kind. A change of λX has no effect over λK(t). Thus the
investment path resulting from the time path of λK(t) does not change with
λX . In other words, the investment policy into solar energy is independent
from the scarcity rent of the resource, only the timing of introduction of so-
lar energy inside the energy mix being affected. Investment into the solar
substitute is delayed by a higher initial oil reserves amount, a quite natural
conclusion.

Less straightforward, the accumulated capacity at the end of the transi-
tion phase between oil and solar is independent from the oil reserves. If one
think of the transition phase as the replacement of some natural capital (the
oil stock) by some man made capital (the installed capacity in producing
solar energy), our model is an example of a situation where the size of the
natural capital stock has no effect over the size of the accumulated man made
capital stock before the depletion of the exhaustible resource. Since KX is
unaffected by X0, we can also conclude that the post oil phase characteristics
do not depend upon the previous scarcity of the oil resource.

Some other features of the energy transition are also noteworthy. Depend-
ing upon the characteristics of the adjustment cost function with respect to
the other model structural elements, it may be the case that either invest-
ment into solar energy starts before the energy price can cover the variable
marginal cost of solar energy, cy, or only when a higher level of the price
than cy has been attained. In the first situation, the energy industry begins
to develop the solar alternative before using it to produce energy. This is a
common feature of R&D models where the industry has to invest into costly
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research efforts in order to attain a sufficiently productive technological stage.
There is no explicit R&D process in this model, and this phenomenon stands
as a distinctive feature of the Hotelling price dynamics combined with the
convexity of the adjustment cost function.

During the only invest phase, the net opportunity cost of the capacity
constraint, βK , remains at its minimal constant level −cK , which is higher
than −p0K , as we have assumed that cK < pK . βK grows over time once solar
energy is introduced inside the energy mix. Thus investing early allows to
reduce the cost of the capacity constraint. On the other hand, the returns
from solar capacity investments are negative at least until the time t at which
p(t) = rp0K + cy + cK > cy, thus later than ty, the time at which p(t) = cy,
because of the Hotelling dynamics of the energy price. The industry should
try to minimize the length of this negative returns period by delaying the
beginning of its investments into the solar alternative. The trade-off between
these two opposite incentives may result either in a early beginning of the
solar investment if the first incentive dominates or conversely in a delayed
beginning if the second dominates. In all cases, the solar industry will begin
to produce even if the energy price is too low to cover the full minimal
marginal cost level, that is rp0K + cy + cK and hence will experience negative
returns over its investments at the early stage of the energy transition.

6 Conclusion

The present study characterizes the economic logic of the transition between
oil and solar energy as a mix of investment patterns features under adjust-
ment costs in the Gould or Treadway tradition and Hotelling dynamics. The
last phase of only solar energy use is a good illustration of the pure logic
of adjustment costs in the line of Treadway. The solar production capacity
expansion process should decelerate over time together with a permanent
decrease of the capacity rent of solar equipment, or in other terms, of the
opportunity cost of the capacity constraint in producing solar energy. In par-
allel, the value of an investment into further solar energy development should
decrease over time down to some constant long run level together with the
solar production level.
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The rise of renewable energy under the rule of Hotelling follows a rather
different logic. Because of the permanent growth of the mining rent in current
terms, the gap between the current energy price and the variable marginal
cost of producing solar energy rises exponentially up to the exhaustion of
the oil reserves. This results into a progressive increase of the capacity rent
of solar energy equipments boosting investment in this alternative energy
source. But since the energy price follows a declining trend after the depletion
of fossil fuels, time passing reduces the incentive to accelerate investment into
the solar energy alternative. The combination of these two opposite effects
result in a non monotonous investment pattern, the investment rate into solar
energy being increasing at the beginning of the transition phase before being
decreasing at the end of this phase.

The features of the investment policy into solar energy may be more or
less dependent from oil scarcity. Our constant variable marginal cost model
stands as an extreme case where the solar investment path is almost inde-
pendent from the oil initial endowments. Introducing more complex cost
structures, for example oil extraction costs depending upon past extraction,
would alter this conclusion of course. But this would already be the case in a
simple resource transition model without adjustment costs, thus blurring the
proper effect of costly investments into the description of energy sources tran-
sition. It appears from our analysis that an endogenous production capacity
investment process into renewable energy generally soften the link between
relative costs dynamics and their effects over production levels dynamics.

When considering the issue of subsidizing ’green ’energy alternatives, our
approach emphasizes that one should consider two main types of subsidies
: subsidies at the production stage aimed at compensating the gap between
the cost of solar energy and the production cost of fossil fuels, and subsidies
at the investment stage intended to lower the investment costs. Our analysis
suggests that these two types of subsidies should have rather different impacts
over the development path of renewable energy with ambiguous consequences
over the energy price trends and the depletion of fossil fuels. We deserve this
problem for further research.

One strong motivation for developing renewable energy alternatives is
climate change mitigation. An explicit account of the polluting nature of
fossil fuels inside our model should impact in more or less complex ways
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both the beginning time and the speed of development of the green energy
alternatives, also an issue which appears worth a specific study.
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Appendix

A.1 Appendix A.1

A.1.1 Properties of λK(t)

During the time interval [tK , ty), λK(t) is defined by (5.1) as a function of tK
and t, λK(t, tK), and:

∂λK(t, tK)

∂t
= −∂λK(t, tK)

∂tK
= (rp0K + cK)er(t−tK) > 0 .

Furthermore, (5.2) defines λK(t) as a function λK(t; tK , ty, λX) during the
time interval (ty, tX) and:

∂λK(t, ty, λX)

∂t
= (rp0K + ck)e

r(t−tK) + (cy − cx)er(t−ty) − rλXert(t− ty)− λXert

= er(t−ty)
[
(rp0K + cK)er(ty−tK) + cy − cx − λXerty

]
− rλXert(t− ty) .

Denote by π ≡ (rp0K + cK)er(ty−tK) + cy − cx − λXerty = (rp0K + cK)er(ty−tK)

since cy = cx + λXe
rty . Then π > 0 and:

∂λK ; ty, λX)

∂t
= πer(t−ty) − rλXert(t− ty) . (A.1.1)

Furthermore:

∂λK
∂ty

= er(t−ty)
[
λXe

rty + cx − cy
]

= 0 , (A.1.2)

∂λK
∂tK

= −(rp0K + cK)er(t−tK) = −πer(t−ty) < 0 , (A.1.3)

∂λK
∂λX

= −ert(t− ty) < 0 . (A.1.4)
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A.1.2 Proof that tX − tK and KX are independent from
λX

Consider the subsystem (5.3), (5.5), (5.6). To prove our claim we differentiate
this system with respect to (tK , ty, tX , λX). Note first that λK(tK) = p0K im-
plies that k(tK) = 0. Denote by: ks(tX) ≡ kX > 0 and ks′ ≡ dks(λK)/dλK >
0. Differentiating the condition (5.3) while taking (A.1.2)-(A.1.4) into ac-
count results in:

dKX =

∫ ty

tK

ks
′ ∂λK
∂tK

dtdtK + dtXkX

+

∫ tX

ty

ks
′
[
∂λK
∂tK

dtK +
∂λK
∂ty

dty +
∂λK
∂λX

dλX

]
dt

= dtXkX −

[∫ tX

ty

ks
′
ert(t− ty)dt

]
dλX −

[∫ tX

tK

ks
′
(rp0K + cK)er(t−tK)dt

]
dtK ,

Denote by:

IλK ≡
∫ tX

ty

ks
′
ert(t− ty)dt > 0 (A.1.5)

IKK ≡
∫ tX

tK

ks
′
(rp0K + cK)er(t−tK)dt

=

∫ tX

tK

ks
′
πer(t−ty)dt > 0 . (A.1.6)

Then:

dKX = kXdtX − IλKdλX − IKK dtK (A.1.7)

Next differentiating (5.5) we obtain:

dpd(q)

dq
|q=KX

dKX = dλXe
rtX + rλXe

rtXdtX .

Denote by pd′ ≡ dpd(q)/dq|q=KX
< 0. Then taking the absolute value and

rearranging results in:

−|pd′ |dKXe
−rtX = dλX + rλXdtX . (A.1.8)
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Inserting the expression (A.1.7) of dKX inside (A.1.8) we get:[
rλX + |pd′|e−rtXkX

]
dtX =

[
|pd′ |e−rtXIλK − 1

]
dλX + |pd′ |e−rtXIKK dtK .

(A.1.9)

(A.1.9) expresses dtX as a function of dλX and dtK .

Then differentiating the condition (5.6) taking into account that ∂λK/∂ty =
0 results in:

dλXK(K)

dK
|K=KX

dKX =
∂λK(tX)

∂tX
dtX +

∂λK(tX)

∂tK
dtK +

∂λK(tX)

∂λX
dλX .

Denote by λX′
K ≡ dλXK(K)/dK|K=KX

. We have shown that λX′
K < 0. Thus the

above expression is equivalent to, making use of (A.1.1), (A.1.3) and (A.1.4):

−|λX′

K |dKX = [πer(tX−ty) − rλXertX (tX − ty)]dtX − πer(tX−ty)dtK − ertX (tX − ty)dλX .

Inserting the expression (A.1.7) of dKX into the above relation results in:[
|λX′

K |kX + πer(tX−ty) − rλXertX (tX − ty)
]
dtX

−
[
|λX′

K |IλK + ertX (tX − ty)
]
dλX −

[
|λX′

K |IKK + πer(tX−ty)
]
dtK = 0

(A.1.10)

Multiplying both sides of (A.1.10) by [rλX + |pd′ |e−rtXkX ] and making use of
(A.1.9), we obtain an expression of the form:

AλdλX + AKdtK = 0 (A.1.11)

where:

Aλ ≡
[
|λX′

K |kX + πer(tX−ty) − rλXertX (tX − ty)
] [
|pd′ |e−rtXIλK − 1

]
−[rλX + |pd′ |e−rtXkX ]

[
|λX′

K |IλK + ertX (tX − ty)
]

AK ≡
[
|λX′

K |kX + πer(tX−ty) − rλXertX (tX − ty)
] [
|pd′ |e−rtXIKK

]
−
[
rλX + |pd′ |e−rtXkX

] [
|λX′

K |IKK + πer(tX−ty)
]

Straightforward computations show that:

Aλ = |pd′|
{
πIλKe

−rty − (kX + rλXI
λ
K)(tX − ty)

}
−|λX′

K |
{
kX + rλXI

λ
K

}
− πer(tX−ty)

40



Now note that since k(tK) = 0:

k(tX)− k(tK) = kX =

∫ tX

tK

k̇(t)dt =

∫ tX

tK

ks
′
λ̇K(t)dt

=

∫ ty

tK

ks
′
πer(t−ty)dt+

∫ tX

ty

ks
′ [
πer(t−ty) − rλXert(t− ty)

]
dt ,

=

∫ tX

tK

ks
′
πer(t−ty)dt− rλX

∫ tX

ty

ks
′
ert(t− ty)dt

implies together with the expression (A.1.5) of IλK and (A.1.6) of IKK that:

IKK = kX + rλXI
λ
K . (A.1.12)

Thus Aλ is given by:

Aλ = −
{
IKK

[
|λX′

K |+ |pd
′|(tX − ty)

]
+ πe−rty

[
ertX − |pd′|IλK

]}
.

Next, AK is equivalent to :

AK = |pd′|
[
IKK (πe−rty − rλX(tX − ty))− kXπe−rty

]
−|λX′

K |rλXIKK − rλXπer(tX−ty)

Substituting for kX its expression given by (A.1.12), we obtain:

AK = |pd′ |
[
−rλXIKK (tX − ty) + rλXI

λ
Kπe

−rty
]

−|λX′

K |rλXIKK − rλXπer(tX−ty)

= −rλX
{
IKK

[
|λX′

K |+ |pd
′|(tX − ty)

]
+ πe−rty

[
ertX − |pd′|IλK

]}
= rλXAλ

Thus we conclude that (A.1.11) is in fact equivalent to:

dλX = −rλXdtK (A.1.13)

Inserting the expression (A.1.13) of dλX inside (A.1.9) while making use
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of the expression of kX resulting from (A.1.12), we then conclude that:[
rλX + |pd′ |e−rtXkX

]
dtX =

[
−rλX

(
|pd′ |e−rtXIλK − 1

)
+ |pd′|e−rtXIKK

]
dtK

⇐⇒[
rλX + |pd′ |e−rtXkX

]
dtX =

[
rλX + |pd′ |e−rtX

(
IKK − rλXIλK

)]
dtK

⇐⇒[
rλX + |pd′ |e−rtXkX

]
dtX =

[
rλX + |pd′ |e−rtXkX

]
dtK

⇐⇒
dtX = dtK

Thus the length of the solar development phase, T ≡ tX − tK is independent
from λX . Making use of the fact that first: dtX = dtK , second dλX =
−rλXdtK , and taking (A.1.12) into account, (A.1.7) is equivalent to:

dKX =
(
kX + rλXI

λ
K − IKK

)
dtK =⇒ dKX = 0 .

Hence KX is also independent from λX .

In a three phases scenario where 0 < tK = ty, a slight adaptation of the
above proof leads to the same conclusion. If tK = ty, λK(t), t ∈ [ty, tX) is
given by:

λK(t) = er(t−ty)p0K +
cy + cK − cx

r

(
er(t−ty) − 1

)
− λXert(t− ty) .

Differentiating the capital accumulation equation results in:

dKX = kXdtX − IλKdλX − I
y
Kdty ,

where:

IλK ≡
∫ tX

ty

ks
′
ert(t− ty)dt > 0 (A.1.14)

IyK ≡
∫ tX

ty

ks
′
πye

r(t−ty)dt > 0 , (A.1.15)

and πy ≡ rp0K + cy + cK − cx − λXerty .

Performing the same kind of computation as for the four phases scenario,
it may be shown that:

AλdλX + Aydty = 0 ,
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where:

Aλ ≡
[
|λX′

K |kX + πye
r(tX−ty) − rλXertX (tX − ty)

] [
|pd′|e−rtXIλK − 1

]
−[rλX + |pd′|e−rtXkX ]

[
|λX′

K |IλK + ertX (tX − ty)
]

Ay ≡
[
|λX′

K |kX + πye
r(tX−ty) − rλXertX (tX − ty)

] [
|pd′|e−rtXIyK

]
−
[
rλX + |pd′ |e−rtXkX

] [
|λX′

K |I
y
K + πye

r(tX−ty)
]
.

Then the analog of (A.1.12) may be derived. Since k(ty) = 0 in this
scenario:

k(tX)− k(ty) = kX =

∫ tX

ty

k̇(t)dt =

∫ tX

ty

ks
′
λ̇K(t)dt

=

∫ tX

ty

ks
′ [
πye

r(t−ty) − rλXert(t− ty)
]
dt ,

implies together with the expression (A.1.14) of IλK that:

πyI
λ
Ke
−rty − rλX(tX − ty)IλK − kX(tX − ty) =∫ tX

ty

ks
′ {
ert(t− ty)πye−rty − rλXert(tX − ty)(t− ty)

−πyer(t−ty)(tX − ty) + rλXe
rt(tX − ty)(t− ty)

}
dt

= −
∫ tX

ty

ks
′
πye

r(t−ty)(tX − t)dt ,

and:

kX + rλXI
λ
K =

∫ tX

ty

ks
′ {
πye

r(t−ty) − rλXert(t− ty) + rλXe
rt(t− ty)

}
dt

=

∫ tX

ty

ks
′
πye

r(t−ty)dt = IyK . (A.1.16)

Making use of (A.1.16), straightforward computations then show that Aλ =
rλXAy which lead to dλX = −rλXdty, implying in turn that dtX = dty and
dKX = 0.
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A.1.3 Proof that the system (5.8)-(5.10) has a unique
solution

We now check that for tK = 0 and λK(0) = p0K , the system (5.8)-(5.10) deter-
mines in a unique way a vector (T, λ0X , KX) thus defining the critical level λ0X
of λX such that tK = 0 together with the duration of the development phase
T and KX , the accumulated capacity level at the end of the development
phase. Differentiating, we obtain:

kXdT − JλKdλX − dKX = 0 (A.1.17)
rλXdT + dλX + |pd′|e−rTdKX = 0 (A.1.18)

πdT − (T − ty)dλX + |λX′

K |e−rTdKX = 0 , (A.1.19)

where we denote:

JλK ≡
∫ T

ty

ks
′
ert(t− ty)dt and π ≡ rp0K + cK − rλX(T − ty) .

Straightforward computations show that the determinant ∆ of the system
(A.1.17)-(A.1.19) is given by:

∆ = (rp0K + cK)

{
1 + e−rT |λX′

K |
∫ T

0

ks
′
ertdt

+ e−rT |pd′|

[
(T − ty)

∫ T

0

ks
′
ertdt−

∫ T

ty

ks
′
ert(t− ty)dt

]}
.

Since t ≤ T and ty ≥ 0 implies that:∫ T

ty

ks
′
ert(t− ty)dt < (T − ty)

∫ T

ty

ks
′
ertdt ≤ (T − ty)

∫ T

0

ks
′
ertdt ,

we conclude that the term into brackets is positive and thus ∆ > 0.

Hence the system (5.8)-(5.10) evaluated at tK = 0 defines a unique vector
(T, λ0X , KX).

In the case tK = ty, the linearized system reduces to:

kXdT − JλKdλX − dKX = 0

rλXdT + dλX + |pd′|e−rTdKX = 0

[πy − rλXT ] dT − TdλX + |λX′

K |e−rTdKX = 0 ,
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where we denote:

JλK ≡
∫ T

0

ks
′
erttdt and πy ≡ rp0K + cy + cK − cx − λX .

Then the determinant ∆ of this system is given by:

∆ = πye
−rT

{
erT +

∫ T

0

ks
′
ert
[
|pd′ |(T − t) + |λX′

K |
]
dt

}
> 0 .

A.1.4 Implications of the oil stock constraint

Next differentiating the oil stock constraint (5.7) we obtain:

dX0 = q(tX)dtX +

∫ tX

0

dqd(p(t))

dp(t)
ertdtdλX

−(dtX − dty)
∫ ty

tK

ks(t)dt− (tX − ty)
∫ ty

tK

ks
′ ∂λK
∂tK

dtdtK

−
∫ tX

ty

ks
′
[
∂λK(t)

∂tK
dtK +

∂λK(t)

∂λX
dλX

]
(tX − t)dt

−
∫ tX

ty

ks(t)dtdtX

Denote by qd
′
(t) ≡ dqd(p(t))/dp(t). Remember that q(tX) = KX . Since

∂λK/∂t = −∂λK/∂tK for t ∈ (tK , ty), the above is equivalent to:

dX0 = KXdtX +

∫ tX

0

qd
′
(t)ertdtdλX

−

[∫ ty

tK

ks(t)dt+

∫ tX

ty

ks(t)dt

]
dtX +

∫ ty

tK

ks(t)dtdty

+(tX − ty)
∫ ty

tK

k̇s(t)dtdtK

−
∫ tX

ty

ks
′
[
∂λK(t)

∂tK
dtK +

∂λK(t)

∂λX
dλX

]
(tX − t)dt
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Simplifying the dtX terms and rearranging we get:

dX0 =

∫ tX

0

qd
′
(t)ertdtdλX +

∫ ty

tK

ks(t)dtdty + (tX − ty)k(ty)dtK

−
∫ tX

ty

ks
′
[
∂λK(t)

∂tK
dtK +

∂λK(t)

∂λX
dλX

]
(tX − t)dt

Since dty = −dλX/(rλX) and dtK = −dλX/(rλX), the above is equivalent
to:

dX0 =
dλX
rλX

{
rλX

∫ tX

0

qd
′
(t)ertdt−

∫ ty

tK

ks(t)dt− (tX − ty)k(ty)

+

∫ tX

ty

ks
′
[
∂λK(t)

∂tK
− rλX

∂λK(t)

∂λX

]
(tX − t)dt

}

Next taking (A.1.1)-(A.1.4) into account:

∂λK(t)

∂tK
− rλX

∂λK(t)

∂λX
= πer(t−ty) − rλXert(t− ty)

= −λ̇K(t) .

Thus:

J ≡
∫ tX

ty

ks
′
[
∂λK(t)

∂tK
− rλX

∂λK(t)

∂λX

]
(tX − t)dt

= −
∫ tX

ty

ks
′
λ̇K(t)(tX − t)dt = −

∫ tX

ty

k̇s(t)(tX − t)dt

Integrating by parts:

J = −

{
ks(t)(tX − t)|tXty +

∫ tX

ty

ks(t)dt

}
= k(ty)(tX − ty)−

∫ tX

ty

ks(t)dt .

Thus we obtain:

dX0 =
dλX
rλX

{
rλX

∫ tX

0

qd
′
(t)ertdt−

∫ ty

tK

ks(t)dt− (tX − ty)k(ty) + J

}
=

dλX
rλX

{
rλX

∫ tX

0

qd
′
(t)ertdt−

∫ ty

tK

ks(t)dt−
∫ tX

ty

ks(t)dt

}

=
dλX
rλX

{
rλX

∫ tX

0

qd
′
(t)ertdt−KX

}
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Since ṗ(t) = rλXe
rt over the time interval [0, tX), the integral of the RHS

is equivalent to:∫ tX

0

qd
′
ertdt =

1

rλX

∫ tX

0

qd
′
(p(t))ṗ(t)dt =

1

rλX

∫ tX

0

q̇d(t)dt

=
1

rλX
(q(tX)− q(0)) .

Thus:

dX0 =
dλX
rλX

[q(tX)− q(0)−KX ] = −q(0)

rλX
dλX

Hence we conclude that λX is defined implicitly as a function of X0, λX(X0),
and dλX(X0)/dX0 = −rλX/q(0) < 0.
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