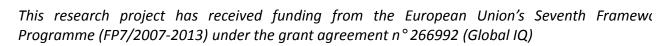


Uncertainties in global changes: An excuse to do nothing? Christian Gollier



Motivation

- Do we do enough for the future generations?
 - Climate change, biodiversity,...
 - Public debts, pension systems,...
 - Housing, infrastructure, R&D, research,...
- There are still much uncertainties about
 - the economic context in which this change will take place;
 - the LT impacts of our actions: climate change!

Uncertain damages

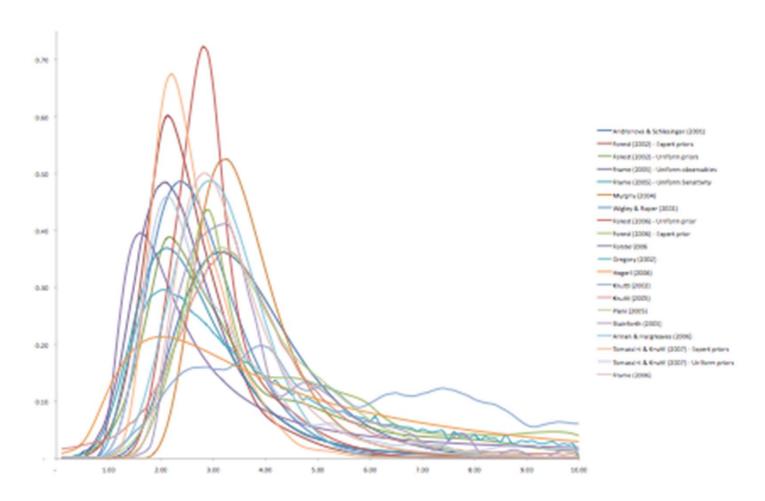
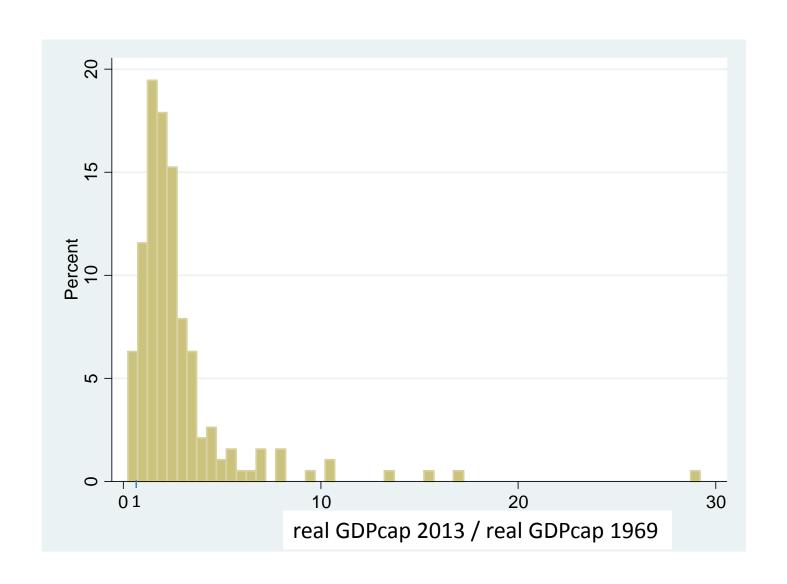


Figure 1: Estimated probability density functions for the climate sensitivity from a variety of published studies, collated by Meinshausen et al. (2009).

Growth uncertainty

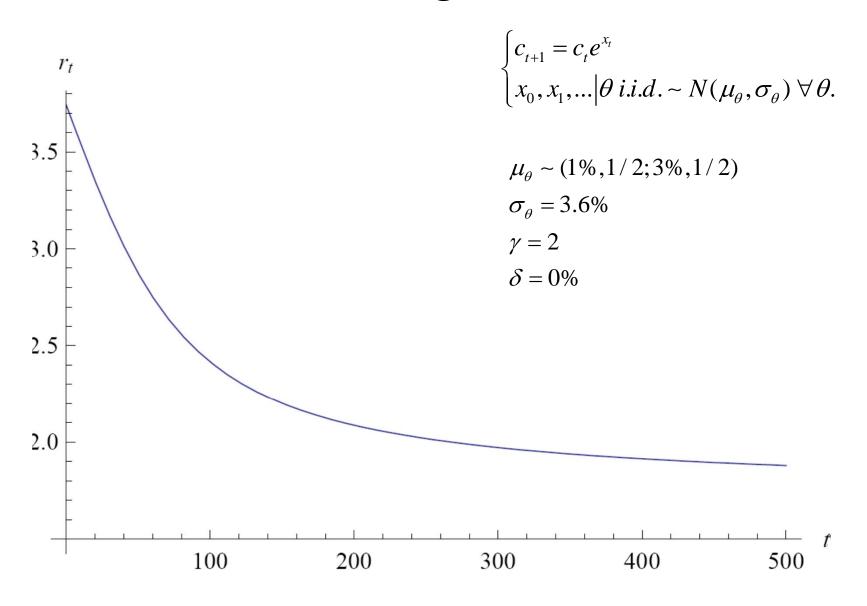


Uncertain growth and the Discount rate (DR)

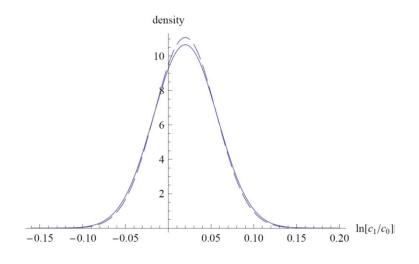
Long Run Risk and Decreasing Discount Rates

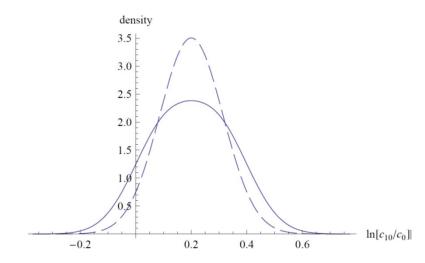
- Do we do enough for the future generations?
 - But future generations are expected to be wealthier!
 - In a growing economy, the DR is the minimum IRR of an investment that compensates for the increased intergenerational inequality that it generates.
- Uncertain growth: A precautionary argument for a smaller DR.
 - Shocks to the growth rate are iid: Flat term structure;
 - Shocks to the growth rate are persistent: DDR!

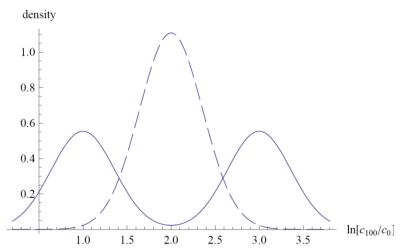
An example with an uncertain trend of growth

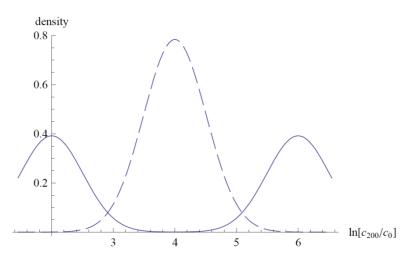


Intuition: fat tails





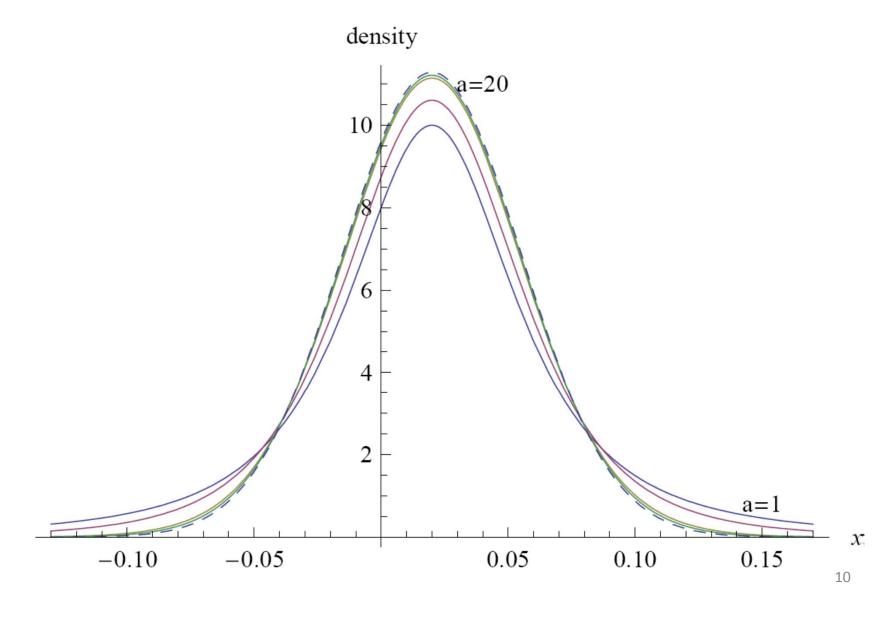




Weitzman (AER 2007)

- Suppose now that we know that consumption follows a geometric Brownian motion, with an uncertain volatility.
- Suppose that our beliefs about the volatility have an inverted gamma distribution.
- The unconditional distribution of future consumption has a Student-t distribution, yielding fat tails.
- The DR equals minus infinity in that case.

Student-t and Normal



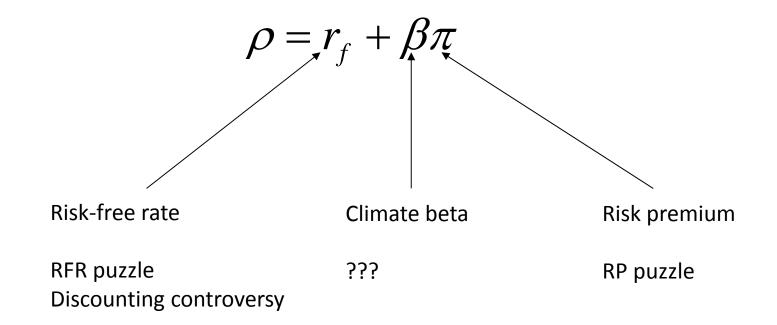
Uncertain damages and the climate risk premium

Uncertain climate damages and the discounting controversy

- Climate damages are uncertain. How should this affect our willingness to fight climate change?
- Let's use standard tools!

Uncertain climate damages and the discounting controversy

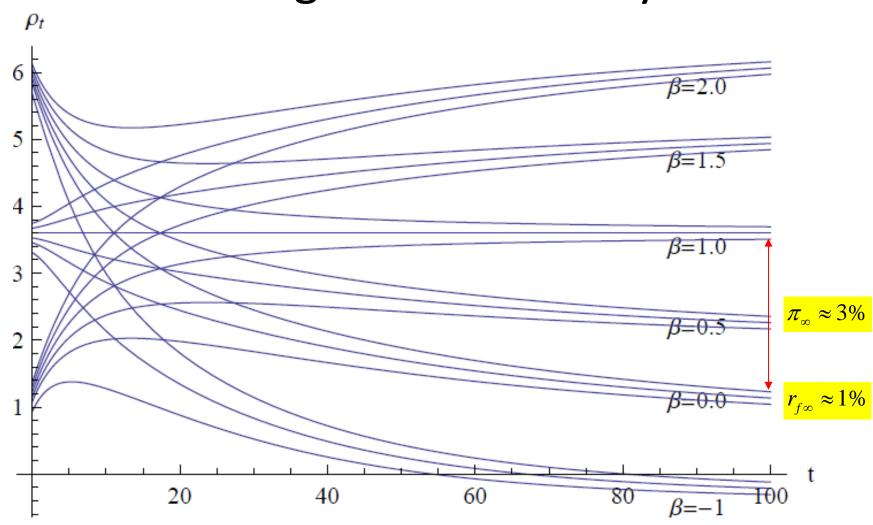
- Climate damages are uncertain. How should this affect our willingness to fight climate change?
- Let's use standard tools!



Term structures of the risk-free discount rate and of the risk premium

- The persistence of shocks to consumption growth provides a simple justification for a decreasing RF rates: Long Run Risk, magnification of LT risk, and prudence.
- But in that context, the risk premium has an increasing term structure.
- Calibration with CRRA=2, mean reversion (LRR), and uncertainty on the LT trend.

Term structures as a function of the beta along the business cycle



The climate beta

- Has mitigation an insurance value?
- The negative-beta theory:
 - A high climate sensitivity implies large damages, low consumption, and a high payoff from mitigation.
- The positive-beta theory:
 - A higher growth implies a higher concentration of CO2, a larger marginal damage, and a larger payoff from mitigation.
 - "Those states in which the global temperature increase is particularly high are also ones in which we are on average richer in the future." (Nordhaus 2011)

A two-period DICE model

• Prototype DICE model:

 $T = \Delta$ temperature

E= emission

Y= pre-damage production

D= damage

Q= post-damage production

C= consumption

$$T = \omega_1 E \tag{1}$$

$$E = \omega_2 Y - I_0 \tag{2}$$

$$D = \theta_1 T^{\theta_2} \tag{3}$$

$$Q = e^{-D}Y (4)$$

$$C = \alpha Q \tag{5}$$

- Investment I_0 to reduce emissions.
- Two sources of uncertainty: climate sensitivity and economic growth.

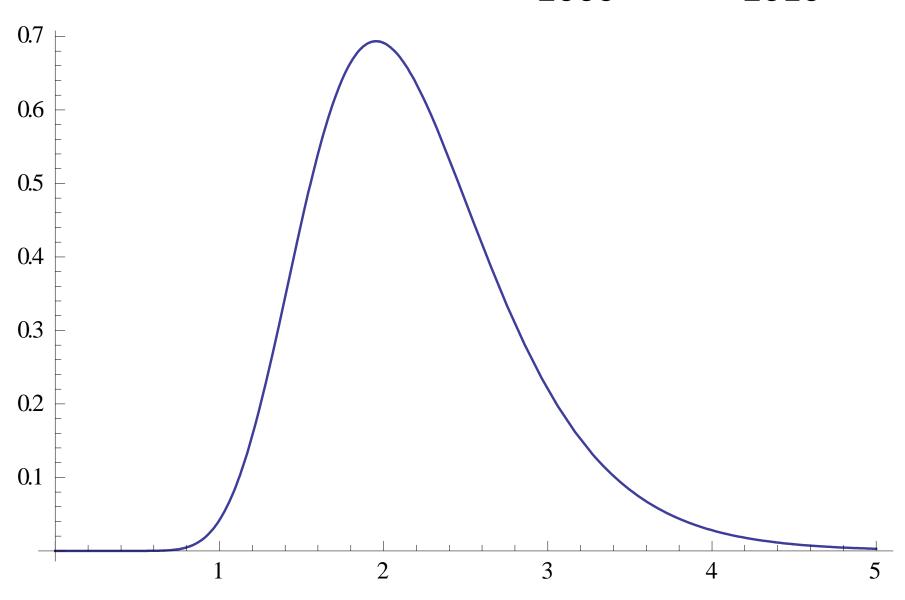
Calibration

Variable	Value	Remark
t	50 years	Time horizon between dates 0 and 1.
$Y = e^{\sum_{i=1}^{t} x_i}$	x_i iid ~ $N(\mu, \sigma^2)$ $\mu = 1.5\%$, $\sigma = 4\%$	Y_0 is normalized to unity. The growth rate of production follows a normal random walk.
ω_2	1	Normalization
$\omega_{\rm l}$	0.45	This implies that the expected increase in temperature in the next 50 years equals $\omega_1 EY = 1^{\circ}C$.
θ_2	$\sim N(1.5, 0.5^2)$	Centered around the "consensus interval" [1,2].
$ heta_{ m l}$	~ U[1%, 6%]	This means that the damage at the average temperature increase of 1°C is uniformly distributed on [1%, 6%] of pre-damage production.
α	0.75	Consumption equals 75% of post-damage production.

$$E \ln \frac{Y_{50}}{Y_0} = 75\%$$
 $\sigma \left(\ln \frac{Y_{50}}{Y_0} \right) = 28\%$

Variable	Value	Remark
t	50 years	Time horizon between dates 0 and 1.
$Y = e^{\sum_{i=1}^{r} x_i}$	x_i iid ~ $N(\mu, \sigma^2)$ $\mu = 1.5\%$, $\sigma = 4\%$	Y_0 is normalized to unity. The growth rate of production follows a normal random walk.
ω_2	1	Normalization
$\omega_{\rm l}$	0.45	This implies that the expected increase in temperature in the next 50 years equals $\omega_1 EY = 1^{\circ}C$.
θ_2	$\sim N(1.5, 0.5^2)$	Centered around the "consensus interval" [1,2].
$ heta_{\!\scriptscriptstyle 1}$	~ U[1%, 6%]	This means that the damage at the average temperature increase of 1°C is uniformly distributed on [1%, 6%] of pre-damage production.
α	0.75	Consumption equals 75% of post-damage production.

Distribution of GDP₂₀₆₀/GDP₂₀₁₀



$$E\Delta T_{50} = 1^{\circ}C$$

Variable	Value	Remark
t	50 years	Time horizon between dates 0 and 1.
$Y = e^{\sum_{i=1}^{t} x_i}$	x_i iid ~ $N(\mu, \sigma^2)$ $\mu = 1.5\%$, $\sigma = 4\%$	Y_0 is normalized to unity. The growth rate of production follows a normal random walk.
ω_2	1	Normalization
$\omega_{\rm l}$	0.45	This implies that the expected increase in temperature in the next 50 years equals $\omega_1 EY = 1^{\circ}C$.
θ_2	$\sim N(1.5, 0.5^2)$	Centered around the "consensus interval" [1,2].
$ heta_1$	~ U[1%, 6%]	This means that the damage at the average temperature increase of 1°C is uniformly distributed on [1%, 6%] of pre-damage production.
α	0.75	Consumption equals 75% of post-damage production.

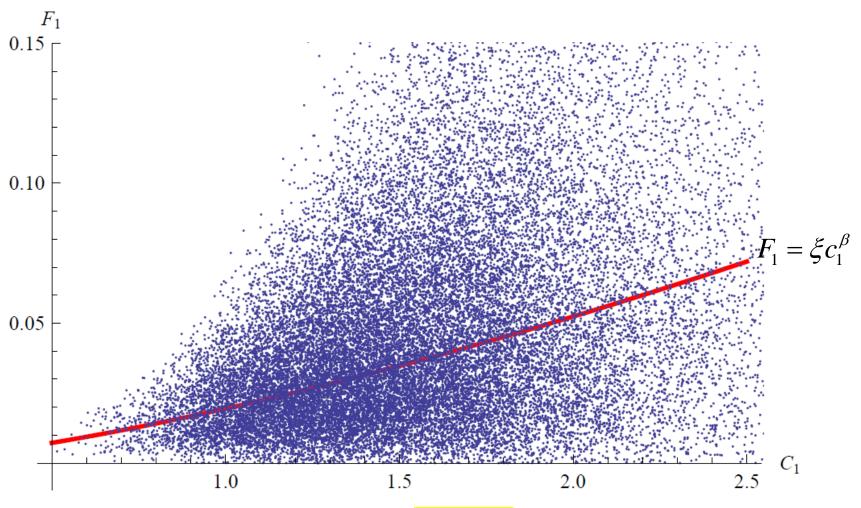
$D \sim (\Delta T)^{1.5}$ "on average"

Variable	Value	Remark
t	50 years	Time horizon between dates 0 and 1.
$Y = e^{\sum_{i=1}^{t} x_i}$	$x_i iid \sim N(\mu, \sigma^2)$ $\mu = 1.5\%, \sigma = 4\%$	V ₀ is normalized to unity. The growth rate of production follows a normal random walk.
ω_2	1	Normalization
o_{l}	0.45	This implies that the expected increase in temperature in the next 50 years equals $\omega_1 EY = 1^{\circ}C$.
θ_2	$\sim N(1.5, 0.5^2)$	Centered around the "consensus interval" [1,2].
$ heta_1$	~ U[1%, 6%]	This means that the damage at the average temperature increase of 1°C is uniformly distributed on [1%, 6%] of pre-damage production.
α	0.75	Consumption equals 75% of post-damage production.

$D | \Delta T = 1^{\circ}C \sim U[1\%, 6\%]$

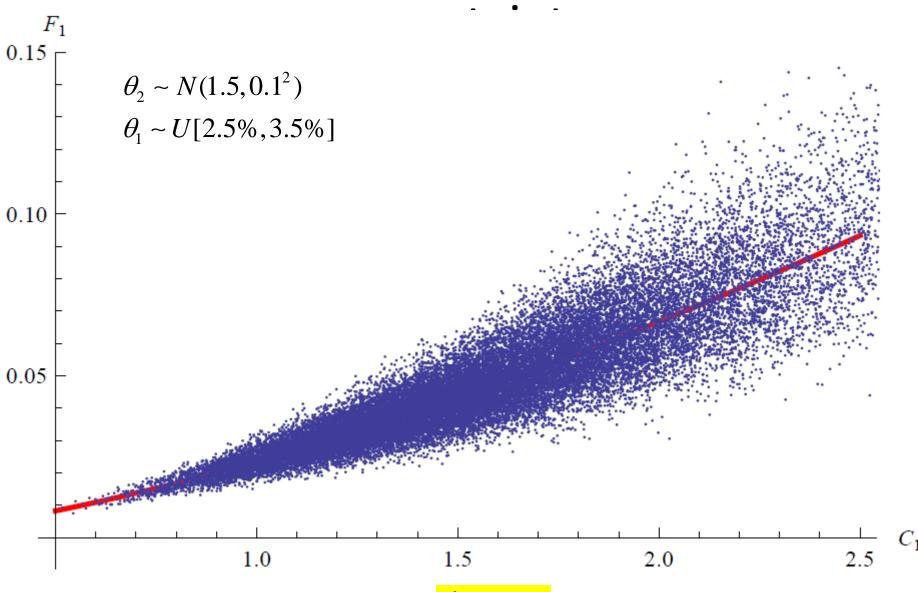
Variable	Value	Remark
t	50 years	Time horizon between dates 0 and 1.
$Y = e^{\sum_{i=1}^{t} x_i}$	$x_i \text{ iid } \sim N(\mu, \sigma^2)$ $\mu = 1.5\%, \sigma = 4\%$	Y_0 is normalized to unity. The growth rate of production follows a normal random walk.
ω_2	1	Normalization
$\omega_{\rm l}$	0.45	This implies that the expected increase in temperature in the next 50 years equals $\omega_1 EY = 1^{\circ}C$.
θ_2	$\sim N(1.5, 0.5^2)$	Centered around the "consensus interval" [1,2].
$ heta_{ m l}$	~ U[1%, 6%]	This means that the damage at the average temperature increase of 1°C is uniformly distributed on [1%, 6%] of pre-damage production.
α	0.75	Consumption equals 75% of post-damage production.

Monte-Carlo (n=30 000)



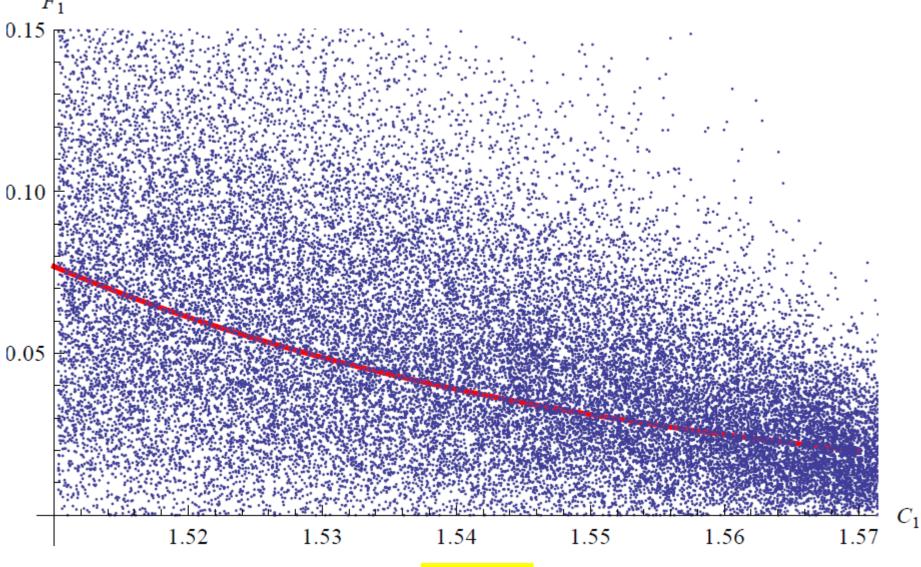
• Estimation of beta: $\hat{\beta} = 1$.

Reduction of climate change



• Estimation of beta: $\hat{\beta} = 1.49$

Growth uncertainty switched off

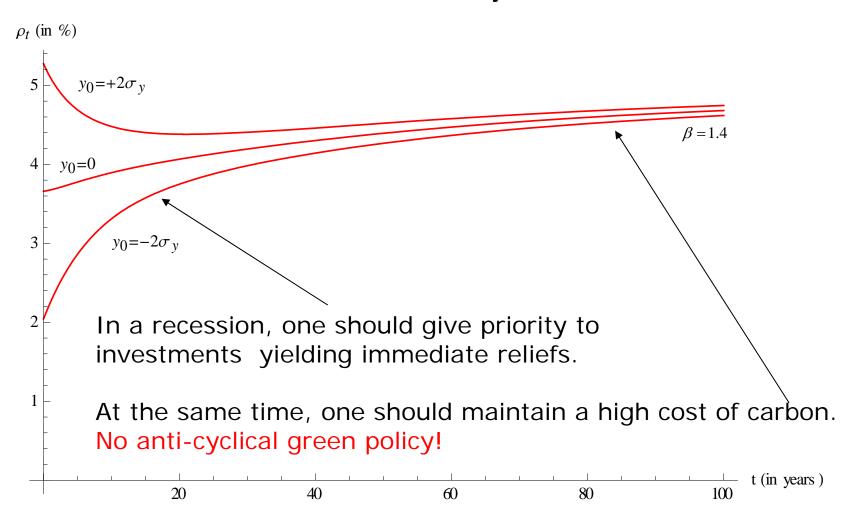


• Estimation of beta: $\hat{\beta} = -36$

Climate beta and the climate DR

- Suppose that the LT risk-free rate is 1%, and the LT risk premium is 3%.
- One should discount climate damages at a rate around $1\% + 1.4 \times 3\% = 5\%$.
- Nordhaus looks right, but he has a problem:
 Double counting:
 - He uses a large discount rate implicitly justified by a large equity premium (and $\beta = 1$);
 - His certainty equivalent climate benefits include a risk premium.

Fighting climate change along the business cycle



Challenges

- No extreme event in this valuation exercise:
 Dismal Theorem, ...
- More fundamental uncertainties and uncertainty aversion?

Irreversibilities, adaptation and option value to wait

Uncertainty, learning and dynamic decisions

- In the DEU model, the timing of resolution of uncertainty (green innovations, climate sensitiveness,...) does not affect welfare.
- But it can affect the sequence of decisions.
- In the absence of irreversibility, the effect of the anticipation of learning has an ambiguous effect on the optimal sacrifice that one should do for the future.

Two types of irreversibility

- "If CC is dramatic, one will not be able to remove CO2 from the atmosphere as it would desirable".
 - An argument to fight CC immediately.
- "If CC is innocuous (cheap green tech), one will not be able to undo the unnecessary green infrastructures".
 - An argument to delay actions.

Conclusion

Risk and uncertainty: The last frontier?

- Crucial role of uncertainties, in particular if fat tails.
 - Benchmark scenarii can be misleading, with a wrong feeling of perfect foresight.
 - Standard deviation is a good measure of risk only in the Gaussian case.
 - Global changes could bring us back to Stone Age.
- However, outside these low-probability events, climate damages arise mostly in the good states of nature.

Thank you!

Contact: global-iq@tse-fr.eu

Jean-Pierre Amigues - Scientific coordinator (TSE)

Céline Claustre - Project manager (TSE)

Domenico Rossetti Di Valdalbero - European Commission Officer (EC)

This research project has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under the grant agreement n° 266992 (Global IQ)

Estimation of RRA

- You are indifferent between
 - 50-50 chance to live with a daily income of 80 or 120;
 - A sure daily income of X.

Estimation of RRA

- You are indifferent between
 - 50-50 chance to live with a daily income of 80 or 120;
 - A sure daily income of X.

γ	Certainty equiv	Certainty equiv
	(80,1/2;120,1/2)	(50,1/2;150,1/2)
0	100,00	100,00
0,5	98,99	93,30
1	97,98	86,60
1,5	96,98	80,38
2	96,00	75,00
4	92,44	62,24

• Risk aversion or aversion to inequality (veil of ignorance).