

International Institute for **Applied Systems Analysis** www.ijasa.ac.at

WP3: Harmonization & **IIASA Model Developments**

Sabine Fuss **Ecosystems Services & Management IIASA**

GLOBAL-IQ Progress Meeting 10-12 October, Prague

IIASA, International Institute for Applied Systems Analysis

Task 3.1 Harmonization of G-IQ Models

• Objectives:

- Alignment of models' assumptions on exogenous trends preserving model specific structures
- Maximize exchange of information among models – e.g. by soft-links – to produce consistent and accurate impact estimates & adaptation options in WP4 & WP5

Task 3.1 Harmonization of G-IQ Models II

• Steps:

- 1. Analyze sector coverage, models and possibilities for information exchange
- 2. Collection of driver information from all models (harmonization of outputs, units, ..., align assumptions on exogenous variables, exchange of endogenous variables)
- 3. Harmonization strategy

Task 3.1 Harmonization of G-IQ Models III

Agriculture & forestry	Water, energy, fuels availability, energy security	Transport, infrastructure, tourism	Competition labor market, international trade, financial stability	Population, health, migration
	Х	Х		
Х	Х			
Х	Х			
			Х	Х
	Х	Х	Х	
	& forestry	& forestry fuels availability, energy security X X X X X X	& forestryfuels availability, energy securityinfrastructure, tourismXXXXXXXXXXXX	& forestryfuels availability, energy securityinfrastructure, tourismlabor market, international trade, financial stabilityXXXXXXXXXXXX

Task 3.1 Harmonization of G-IQ Models IV

							1/01	louer ren	plate for GLC	IDAL-IQ N	louers							
Model		GLOBI	MC		WITC	н		ICE			REMIN	D		MagP	IE		ICES	
Variables	units	1/0	descr.	units	1/0	descr.	units	1/0	descr.	units	1/0	descr.	units	1/0	descr.	units	1/0	des
Population	Heads	exog.	can be aligned with other models	Heads	exog.	can be taken from db, to be aligned with other models				Heads	exog.	can be aligned	10^6 Heads	exog.	can be aligned with other models	units and rates of growth	Exog. (I)	define the re of the mode
GDP	\$2,000			USD 2005			USD 2007 (can be rebased)			\$2000 MER			USS			2004 \$ Millions		
Productivi Y	t tons/ha	exog./ endog.	via crop yield improveme nts	% change of gdp/cap	endog enous/ exogen ous	1	range of productivi ty coefficeint s by sector/ino uts/region	us/endo	TFP, specific factor productivit y, input efficiency, transport/t rade efficiency	-	input	factor productivit y for production factors in CES nest	ton/ha	exog.	from LPJmL. Available CCS	Rate of change	Exog. (I)	Mny prode y fact are
Energy demand	GJ		Various biofuel and bioenergy demand projections POLES, WEO,	Ē			Value of energy purchase d by sectors			E			10^6 GJ per year		Projection from REMIND; also soft coupled with REMINED	Value of energy purchase d by sectors		
CO2 emissions	CO2eq	output	from land use sector, not only CO2, but also non- CO2, e.g. methane		end.	from LULUCF exogenous in bau, endogenou s in climate policy	Mt CO2eq	endo.	CO2 (can map to other satellite accounts as well)	GtC	output	from energy sector and landuse, also other GHGs	Mt CO2eq	endo.	CO2, N2O, CH4	Co2 eq.	Endog. (O)	Speci by rep and indus non-C CH4, PFCs, and S

Task 3.1 Harmonization of G-IQ Models V

- Three-pronged approach to harmonization:
 - Sharing assumptions on basic model drivers such as GDP and population by (a) choosing common socio-economic pathways (WP1), (b) considering to absorb some drivers from those models, in which they are exogenous.
 - 2. Indirect harmonization by moving models as closely as possible to storylines formulated in collaboration with WP1 with targeted model adjustments.
 - 3. Soft-linking of models

Task 3.2 Developments IIASA Models

BeWhere Model

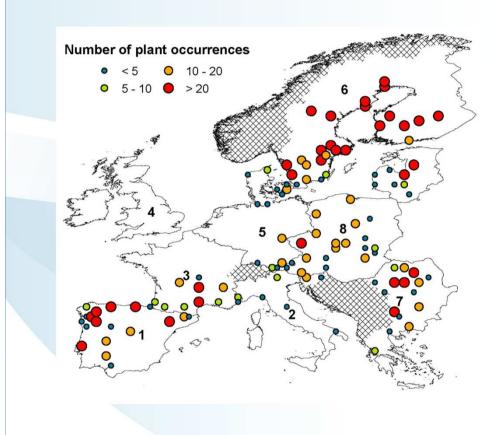
Engineering model for optimal siting of bioenergy plants, costs and emissions across the whole supply chain

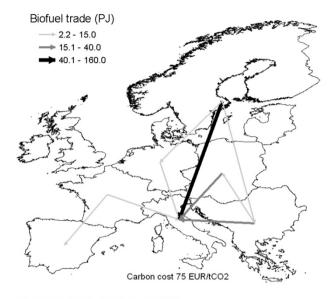
GLOBIOM

Global, bottom-up partial equilibrium model

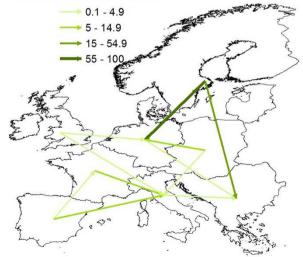
Biophysical Models

EPIC (crop model) RUMINANT (livestock) G4M (forest model)

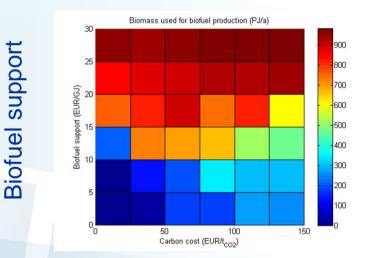

Task 3.2 Developments IIASA Models II

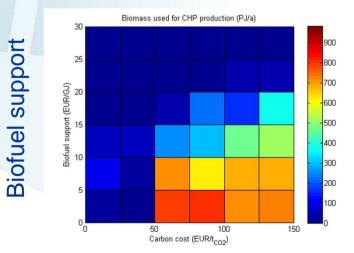

- BEWHERE extensions:
 - Implementation at the European level
 - Inclusion of different feedstocks:
 lignocellulosic biomass (e.g. forestry residues, crop residues, household waste)
 - Multi-commodity production: heat, power, biofuels
 - Expansion of technologies: gasification, hydrolysis and fermentation, combustion


Task 3.2 Developments IIASA Models III


- BEWHERE cont'd:
 - Trade of feedstock and biofuel between different countries based on transportation cost.
 - Ready for linkage with the EU-GLOBIOM
 - BEWHERE-GLOBIOM linkage will first be tested at EU level (work in progress).

Example results – EU





Biofuel Support vs Carbon Cost

Biomass used (PJ/a)

Biofuel

CHP

Task 3.2 Developments IIASA Models IV

- BEWHERE cont'd:
 - Global BeWhere:
 - new version of EU-BeWhere under development based on country-specific experience (e.g. simplified transport matrix, better pre-selection of optimal location of production plants)
 - expected to be operational by summer 2013

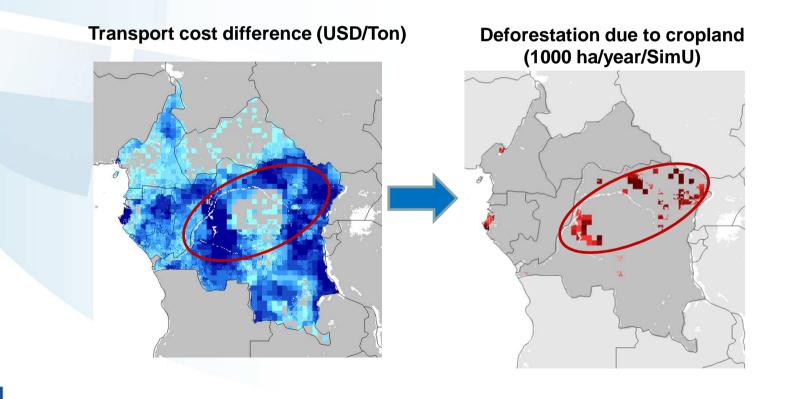
Household-based energy demand from WP2 (tbd)

Task 3.2 Developments IIASA Models V

- GLOBIOM:
 - Soft-link GLOBIOM-WITCH
 - Major steps with decision to go beyond soft-linking
 - 3 dimensional look-up table: CO2 price, biomass for bioenergy price, year.
 - First version of a look-up table passed from GLOBIOM to WITCH to allow for integration in WITCH

Task 3.2 Developments IIASA Models VI

- GLOBIOM:
 - Improvement GLOBIOM-EPIC link
 - Climate change
 - Managements
 - -Better representation of water
 - New hiring work in progress


Task 3.2 Developments IIASA Models VII

- GLOBIOM:
 - Better representation of infrastructure and trade
 - Good progress on improvement of transport cost in GLOBIOM
 - Impacts of improved infrastructure on e.g. deforestation

 Future work: comparison with other models LPJmL/MagPIE & sensitivity analysis (Task 3.3)

Impact of improved infrastructure on deforestation in the Congo Basin

Infrastructure scenario : + 0.6 Mha deforested/year (x3)
 ⇒Deforestation in DRC dense forest

