

REVIEW OF HEALTH IMPACTS

Task 2.1.1

Vojtěch Máca

Charles University Environment Center

Centrum pro otázky životního prostředí Univerzita Karlova v Praze

CC health effects – current scope

Health outcome	Known effects of weather and climate variability		
Heat stress	 Heat waves increase the risk of deaths and hospitalisations in the elderly. High temperatures increase the risk of occupational and leisure-related heat injuries and heat stroke 		
Cold	 Low temperatures increase the risk of death from cardio-respiratory disease, and hypothermia and cold-injuries amongst the exposed (e.g. occupational, homeless) 		
Air pollution-related mortality / morbidity	 Weather affects air pollutant concentrations, and seasonality and production of aeroallergens. Hot, dry weather increases risk of wild fires and thus smoke exposure. 		
Health impacts of floods and windstorms	• Events have direct effects (deaths and injuries) and indirect effects (e.g. long-term psychological morbidity), and may damage critical infrastructure (e.g. health services, water supply systems).		
Mosquito-borne diseases, tick-borne diseases	 High temperatures increase rate of vector development and biting habits. Climatic condition affect vector viability directly and via impacts on habitat and other species (e.g. hosts, predators). 		
Food-borne diseases	Temperature affects survival for some pathogens (Salmonella) but not others (rotavirus).		
Water-related diseases	 Drought may affect water availability and quality. Heavy rainfall may results in infectious disease outbreaks (e.g. floods in urban areas are sometimes associated with leptospirosis). 		

heat and mortality

- pooled MA functions
- % increase in all mortality for each degree AT above threshold
 - based on PHEWE study of 15 cities in Europe (Baccini et al. 2008)
- adaptation limited evidence
 - reduction on heat-related hospital admissions with use of central air conditioning = 0.51 [0.02, 1.0] (Ostro et al, 2010)
 - effects of acclimatisation
 (autonomous adaptation)

Age, yrs.	Mediterranean	North-Continental	
	% change (95% CI)	% change (95% CI)	
All	3.12 (0.60; 5.73)	1.84 (0.06; 3.64)	
15–64	0.92 (-1.29; 3.13)	1.31 (-0.94; 3.72)	
65–74	2.13 (-0.42; 4.74)	1.65 (-0.51; 3.87)	
75+	4.22 (1.33; 7.20)	2.07 (0.24; 3.89)	

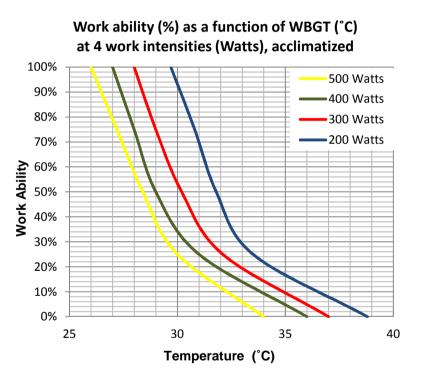
Source: Baccini et al. 2008

heat and morbidity

- morbidity impacts of temperature not as consistent or extensively characterised as mortality outcomes, especially in relation to hot weather (Kovats and Hajat, 2008)
- emerging evidence_
 - potential impact of hot weather on hospital admissions due to cardiovascular and respiratory diseases (Lin et al., 2009)
 - association between temperature and hospital admissions
 (Ostro et al., 2010)
 - association between heat and humidity (apparent temperature) and preterm delivery (Basu et al., 2010)

occupational heat stress

Effects


Mild

Moderate

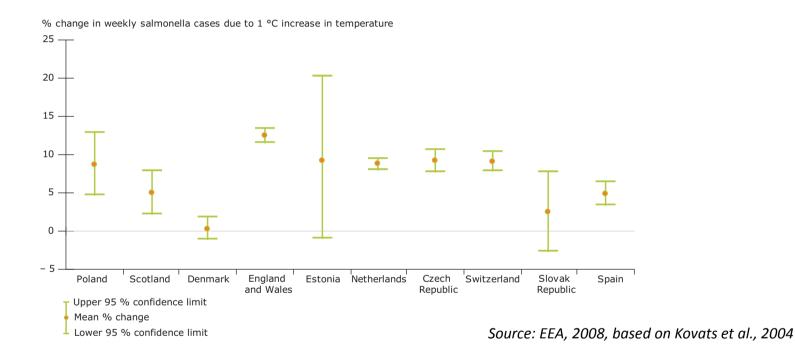
Severe – heatstroke, death

Responses

self-pacing → reduced output
 (and/or occupational health
 interventions)

Source: Kjellstrom et al., 2008

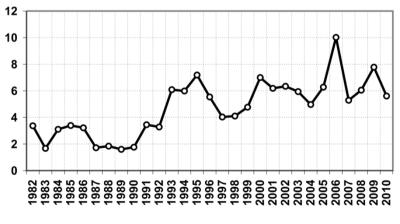
flooding and mortality


- over the last 10 years, floods in Europe have killed more than 1,000 people and affected over 3.4 million others
- top 10 flood disasters in the EU27 from 2000–2009 according to total number affected

Year	Country	Start month	Number killed	Total number affected	Total damages (,000 US\$)
2007	United Kingdom	July	7	340,000	4,000,000
2002	Germany	August	27	330,108	11,600,000
2002	Czech Rep	August	18	200,000	2,400,000
2000	Romania	April	9	60,431	100
2002	Austria	August	9	60,000	2,400,000
2006	Hungary	March	0	32,000	No data
2005	Romania	September	10	30,800	No data
2007	United Kingdom	June	6	30,000	4,000,000
2006	Romania	March	6	17,071	No data
2005	Romania	July	24	14,669	800

Source: Guha-Sapir et al. 2011

heat effects on food poisoning


Kovats et al. (2008) produced pooled estimate of 7.02% (95% CI 4.50, 9.55) increase per °C above 6 °C threshold

vector-borne transmissible diseases

- increase spread of serious vector-borne transmissible diseases
- spread of ticks to higher latitudes and altitudes (Lindgren and Jaenson, 2006, Danielová et al. 2008, Lukan et al. 2010)

Reported cases of tick-borne meningocephalitis, Czech Rep., 1980-2010 (cases per 100,000 inhabitants)

Sorce: Kříž and Beneš (2011)

health valuation | components

market goods

- changes in demand for medical treatment
- change in labour productivity (work incapacity)

non-market goods

• disutility due to illness and mortality risks (morbidity, mortality)

income change

• loss in productivity and earnings in future (e.g. IQ decrement)

Valuation of Premature Mortality

- effects on mortality risk ideally characterised as shifts in individual (population) survival curves
- Mortality risk can be measured in terms of_
 - lives saved (prevented fatality) \rightarrow VSL
 - > accidents, (job-related) fatalities, respiratory, cardiovascular, cancers
 - life extension (increased remaining LE) \rightarrow VOLY (VSLY)
 - ➢ air quality context
- Alternatives (though not quite consistent with welfare economics)
 - Quality-/ Disability-Adjusted Life Years
 - costs per QALY (CEA), DALYs * VOLY etc.
 - Human capital approach
 - VSL depends on discount rate, time (lower for children), and productivity (lower for female, zero for unemployed or disabled)

Value of a Statistical Life - VSL

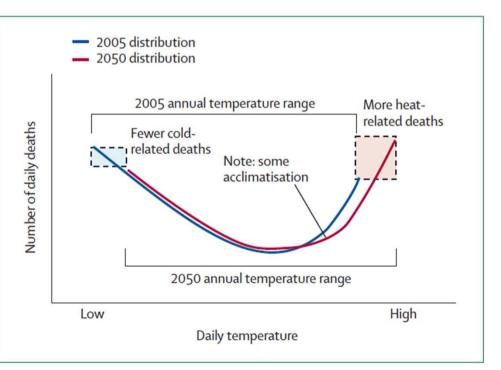
 Marginal value of reducing the risk of dying, defined as marginal value that the individual is willing to trade for her income

$$VSL = \frac{\partial WTP}{\partial R} \bigg|_{U=const.}$$

- WTP [500 Euro] for the risk reduction [1:1000], then VSL equals to 0.5 million Euro (500Euro * 1000)
- Reduce the risk by 1:1000 for each person in a population of 1000 people is the same as to 'safe' 1 life

mortality valuation

(recurrent) issues:


- lives 'saved' v. prevented 'fatality'
- **beneficiary of policy**: elderly, children, at risk (ill, exposed,...)
- **immediate** effect, latent or with a cessation leg
- **context** (environmental, occupational, accidental) --- controllability, voluntariness, risk factors, etc.
- **cause** of death (respiratory and cardiovascular diseases, cancer; malnutrition, diarrhoea, malaria)

VSL or VOLY?

- VSL/VPF used for flood related deaths (aka accidental death)
- VOLY use advocated in the case of heat mortality
 - high proportion of heatattributable deaths are brought forward in the elderly (i.e. short term mortality displacement)
 - currently no evidence on the average YOLLs from heat related mortality

Schematic representation of how an increase in average annual temperature would affect annual total of temperature-related deaths

Source: McMichael et al., 2006

OECD indicative best VSL estimate

OECD meta-analysis by Lindhem-Navrud-Braathen (2012), recommendations:

- average adult VSL for OECD countries of USD_{2005} 1.5 4.5 million, with a base value of USD 3 million.
- for EU-27, the corresponding range is USD_{2005} 1.8 5.4 million, with a base value of USD 3.6 million
- no adjustments for age, health status, timing of risk, risk perception, cancer or dread, magnitude of risk change, public vs. private risk change

mortality: COI, productivity loss, dis-welfare

Cost-Of-Illness

human capital approach \rightarrow i.e. discounted flow of future earnings or consumption

i] Direct (resource) costs

 medical costs paid by the health service (or covered by insurance), and any other personal out-of-pocket expenses

ii] Indirect (opportunity) costs

- the cost in terms of lost productivity (work time loss, performing at less than full capacity) and the opportunity cost of leisure
- cost of absenteeism, friction costs, often approximated by GDP loss due to sickness leave

Discomfort

– WTP for dis-utility for pain and suffering

air pollution-related morbidity

morbidity outcomes in ExternE

endpoint	resource costs	productivity loss	discomfort
chronic bronchitis			х
respiratory hospital admission	x	x	х
cardiac hospital admission	x	x	x
consultation with primary care physicians: Asthma	x		x
consultation with primary care physicians: Upper respiratory disease	x		x
consultation with primary care physicians for allergic rhinitis	x		x
restricted activity day		x	х
minor restricted activity day			х
acute respiratory symptoms in children			х
lower respiratory symptom			х
medication/bronchodilator use by asthmatics	x		
cough days			x
work loss day		x	

other morbidity outcomes

Salmonellosis

 Watkiss & Hunt (2011) estimate total costs (treatment, productivity loss, discomfort) weighted by the severity incidence at between €3,500 and €7,000

Diarrhoea

• FUND model (R. Tol) uses € 16,000 for a non-fatal case (origin?)

loss of labour productivity

• Work Loss Day endpoint in ExternE (GDP per labour force member)

wider effects of flood events affecting wellbeing

- mental health, stress and depression
- WTP for depression treatment \$270/month (Unützer et al., 2003)

