

Ancillary benefit of reducing GHG emissions



Chiara Ravetti IHEID-CIES

THE GRADUATE INSTITUTE | GENEVA

INSTITUT DE HAUTES ÉTUDES INTERNATIONALES ET DU DÉVELOPPEMENT

GRADUATE INSTITUTE OF INTERNATIONAL AND DEVELOPMENT STUDIES

Theoretical framework

•INTERNATIONAL MODELS (Rübbelke 2009). Impure public good model of climate change.

- Game theoretical framework that looks at free-riding incentives with ancillary benefits.
- Karen Pittel (Ifo Institute and University of Munich)

•DOMESTIC MODELS (Krupnick et al. 2000).

- Consider ancillary benefits as choice of any other domestic pollutant.
- Theory of environmental regulation of pollution
- » command-and-control vs. economic incentives.

Bottom-up approaches

Consider specific causal linkages, usually with micro-level data.

- Epidemiological studies estimating dose response functions
- 2. Willingness to pay studies estimating the value of reduced mortality/morbidity
- Industrial change studies estimating the impact of various policy options

Bottom Up Studies – DRF

AUTHORS	LOCATION	MODEL & CONTROLS	RESULTS
Aunan and Xiao-Chuan (2004)	China	Use previous studies for health-response functions. Meta analysis presented below.	A 10mg/m3 rise in pollution increases by 0.3 to 1% mortality from various health related illnesses.
El Fadel and Massoud (2000)	Lebanon	Hospital data in various parts of Beirut: COPD hospital admissions, Pneumonia hospital admissions, Respiratory and cardiac hospital admissions	Measures in terms of COI, WTP and human capital approaches.
Wang and Smith (1999)- WHO	China	Bottom-up methodology for Two sectors-energy and household. 10% below business-as-usual (BAU) by 2010 and 15% below by 2020.	Annual avoided death of some scenarios could reduce total mortality by as much as 4%. but variation by sector: conservative estimates show, for example, that the health benefits of one ton reduction in particulates emissions from household stoves are at least 40 times larger than those from coal-fired power plants.
Andrew Foster, Naresh Kumar (2011)	Delhi	Air pollution data, collected at 113 sites from July- December 2003, compute exposure at the place of residence of 3989 subjects. A socio-economic and respiratory health survey was administered in 1576 households. This survey collected time-use, residence histories, demographic information, and direct measurements of lung function with subjects.	Strongest results for those spending lots of time outdoors.
Haidong Kan, Bingheng Chen (2003)	Shanghai	Conditional logistic function, controlling for weather conditions, 48h MA of an index of pollutants.	A 10mg/m3 increases by 1% mortality.

1. Epidemiological studies

Dose response functions

M. El-Fadel, M. Massoud / The Science of the Total Environment 257 (2000) 133-146

135

Table 1

Summary ranges of worldwide health impacts DRFs for PM₁₀, PM_{2.5}, BS, and TSP (Vedal, 1997)^a

Change in PM concentration	Percent increase in mortality (%)	Percent increase in morbidity (%) ^b	Morbidity type
Increase of 10 μ g/m ³ in PM ₁₀	0.1-4.6	0.2-2.9	Pneumonia hospital admissions
		0.8-11.5	COPD hospital admissions
		0.2-6.4	Respiratory hospital admissions
		0.6-1.2	Cardiac hospital admissions
		0.4-6.0	Emergency cases of asthma
		0.3-0.4	Bronchitis hospital admissions
		1.1-24.9	LRI symptoms
		0.4-13.0	URI symptoms
		1.6-17.6	Cough symptoms
Increase of 10 μ g/m ³ in PM ₂₅	0.4-3.7	0.41-24.6	Respiratory hospital admissions
		3.7-20.9	Asthma hospital admissions
Increase of 10 μ g/m ³ in BS	NR	0.07-18.2	Respiratory hospital admissions
		0.3-5.3	Asthma hospital admissions
		1.2-16.5	COPD hospital admissions
Increase of 100 μ g/m ³ in TSP	3.3-8.3	NR	NR

^a*Abbreviations:* COPD, chronic obstructive pulmonary disease; LRI, lower respiratory illness; URI, upper respiratory illness; NR, not reported.

^bMorbidity — the incidence of respiratory and/or cardiovascular symptoms and diseases.

End-point	Coefficient (%)	S.E.	Reference (particle measure in
(pollutant)			original study)
All-cause i	mortality		
PM ₁₀	0.046	0.017	Jin et al., 1999 (TSP)
	0.028	0.009	Xu et al., 2000 (TSP)
	0.038	0.017	Cropper et al., 1997 (TSP) ^a
	0.030	0.010	Kan and Chen, 2003 (PM ₁₀)
SO ₂	0.191	0.060	Xu et al., 1994
	0.161	0.059	Wong et al., 2001
	0.024	0.009	Xu et al., 2000
	0.039	0.024	Venners et al., 2003
	0.159	0.025	Kan and Chen, 2003
Mortality d	ue to cardiovascu	lar disea	ses
PM ₁₀	0.128	0.053	Jin et al., 1999 (TSP)
	0.040	0.015	Kan and Chen, 2003 (PM ₁₀)
	0.036	0.013	Xu et al., 2000 (TSP)
	0.072	0.055	Cropper et al., 1997 (TSP) ^a
SO ₂	0.169	0.045	Kan and Chen, 2003
	0.182	0.041	Venners et al., 2003
	0.018	0.012	Xu et al., 2000
Mortality d	ue to respiratory o	liseases	i de la companya de la
PM ₁₀	0.359	0.127	Jin et al., 1999 (TSP)
	0.052	0.143	Cropper et al., 1997 (TSP)
	0.094	0.053	Wong et al., 2001 (PM ₁₀)
	0.060	0.035	Kan and Chen, 2003 (PM ₁₀)
	0.302	0.199	Xu et al., 1994 (TSP)
	0.043	0.027	Xu et al., 2000 (TSP)
SO ₂	0.104	0.048	Venners et al., 2003
	0.325	0.078	Kan and Chen, 2003
	0.736	0.744	Xu et al., 1994
	0.074	0.025	Xu et al., 2000

					Search S
5U2	U. 1U4	U.U40	venners et al., 2005		
	0.325	0.078	Kan and Chen, 2003		
	0.736	0.744	Xu et al., 1994		
	0.074	0.025	Xu et al., 2000		
lospital	admissions fo	respiratory o	diseases		
PM ₁₀	0.159	0.030	Wong et al., 1999 (PM ₁₀)		
	0.100	0.025	Wong et al., 2002 (PM ₁₀)		
SO ₂	0.129	0.040	Wong et al., 1999		
	0.178	0.040	Wong et al., 2002		
lospital	admissions fo	cardiovascu	ılar diseases		
PM ₁₀	0.060	0.025	Wong et al., 1999 (PM ₁₀)		
	0.070	0.020	Wong et al., 2002 (PM ₁₀)		
50 ₂	0.159	0.050	Wong et al., 1999		
	0.208	0.035	Wong et al., 2002		
hronic	respiratory illne	ss in adults			
PM ₁₀	0.299	0.014	Zhang et al., 1999 (TSP)		
	0.648	0.129	Xu and Wang, 1993 (TSP)		
	0.461	0.050	Jin et al., 2000 (TSP)		
	0.725	0.370	Xiao et al., 1990 (TSP)		
hronic	respiratory illne	ss in childre	n		
^D M ₁₀	0.362	0.017	Qian et al., 2000 (TSP)		
	0.969	0.045	Qian et al., 2004 (PM ₁₀)		
	4.756	0.815	Yu et al., 2001 (PM ₁₀)		
	0.447	0.054	Zhang et al., 2002 (PM ₁₀ and TSP)		
r mortal	ity and hospita	l admissions	the coefficients refer to percentage ch	ange in number of cases per person per µg/m ³	
ange in	daily ambient (concentratior	. For chronic respiratory illness they	refer to percentage change in prevalence rates	
µg/m ³	change in long-	term concen	tration. S.E.: Standard Error.		
Carri	ed out in Delhi an	d thus not includ	ded in the meta-analysis. Shown here because	TSP levels in Delhi are similar to, e.g. Beijing and use of	
coal	is widespread.				
	-				
			•	ons the coefficients refer to	
				ber of cases per person per	
				pient concentration. For	
				hey refer to percentage	
			•	s per µg/m3 change in long-	
		term c	oncentration. S.E.: S	Standard Error.	
	c)	0.0	riad aut in Dalhi and	thus not included in the	
	a)	Car		thus not included in the	
				hown here because TSP e similar to, e.g. Beijing and	

How to estimate a DRF

- Lagged moving averages of air-pollution levels, e.g. the mean of airpollution levels of the current and 3 preceding days. Or some other time-stratified method.
- Include other controls such as temperature, humidity, day of week, a time variable or season, age, individual fixed effects.
- Regress to see if they correlate significantly with mortality for a specific lung disease.
- Need data on daily mortality/morbidity, air pollution and weather data. Yanjun et. Al (2011) use from August 1, 2006 to December 31, 2008 in Shenyang.

Source: Zhaoyi et al. (2000), Yanjun et al. (2011)

Baseline

Always compare to a situation of no change.

- Know the «typical» number of deaths/illnesses by age and sex groups
- Estimate improvements by a reduction in pollutants.

Sex ^a	Age group ^b									
		0-9	10-19	20-39	40-59	60-69	> 70	Unknown	Total	
Male (51)		5.54	2.67	9.60	18.31	21.35	37.48	5.07	100.00	
Female (49)		6.50	2.91	4.00	13.30	17.18	51.13	5.00	100.00	
Total (100)		5.93	2.77	7.31	16.27	19.66	43.03	5.03	100.00	
Total number of de	eaths	808	375	921	2131	2593	5935	677	13 440	
^a US Bureau of ^b MSA (1996).	the Cens	us (1999).		↓						
		ves saved p	er year due	to 10 μg/m ²	³ reduction in	PM ₁₀				
^b MSA (1996).	redicted li	ves saved p	-			PM ₁₀	70 U	Jnknown	Total	
^b MSA (1996).	redicted li Age gro	ves saved p up	-	39 40-	-59 60-	-69 >		Jnknown 1–16	Total 6-314	
^b MSA (1996).	redicted li Age gro 0–9	ves saved p up 10-19	20-3	39 40-) 1-:	-59 60- 58 1	-69 > 67 3-	118 0			

Environmental Burden of Disease (EBD) in a population

Ostro (2004), WHO

$$AF = \frac{\sum P_i RR_i - 1}{\sum P_i RR_i}$$

Pi are various subgroups of population, minus the control one;

RR is the relative risk function for sub-population i, e.g. Children, or elderly people

EDB: Relative Risk

Outcome and exposure metric	Source	Relative risk function ^a	Suggested ß coefficient (95% Cl)	Subgroup
All-cause mortality and short-term exposure to PM10 ^b	Meta-analysis and expert judgment (see text)	RR = exp[ß (X -Xo)]	0.0008 (0.0006 - 0.0010) ^c	All ages
Respiratory mortality and short-term exposure to PM10 (all-cause mortality for upper bound where applicable)	Meta-analysis (Table 2)	RR = exp[ß (X-Xo)]	0.00166 (0.00034, 0.0030)	Age <5 years
Cardiopulmonary mortality and long-term exposure to PM2.5	Pope et al. (2002); R Burnett ^d	RR = [(X+1)/(Xo+1)] ^β	0.15515 (0.0562, 0.2541)	Age >30 years
Lung cancer and long-term exposure to PM2.5	Pope et al. (2002); R Burnett ^d	RR = [(X+1)/(Xo+1)] ^β	0.23218 (0.08563, 0.37873)	Age >30 years
			Source: Ostro (200	4)

2. Valuatic	on Studies	: different methods
	Valuation Method	Description
	Human Capital	Based on present value of productivity of an individual, lost in case of premature death.
Mortality	WTP	Ask people directly what they are willing to pay for reduced risk of mortality. Captures intangibles.
	COI	Consider 1) medical expenses and 2) lost wage and restricted activities while in bed
Morbidity	WTP	 Averting method behaviour: time and money spent by an individual to avoid air pollution is the lowest bound value of health Contingent valuation method: willingness to pay to avoid symptoms and lost days of
		work.

Bottom Up Studies - Valuation methods

AUTHORS	LOCATION	MODEL & CONTROLS	RESULTS
El Fadel and Massoud (2000)	Lebanon	Hospital data, Beirut: COPD, Pneumonia, Respiratory and cardiac hospital admissions	Measures in terms of COI, WTP and human capital approaches.
Cifuentes, Prieto, and Escobari (2001)	Chile	WTP survey	Get WTP also old people (70-80 years)
Alberini et al. (1997)	Taiwan	WTP survey	WTP
Alberini et al. (2007)	Delhi	Survey of commuters, WTP on mortality	Value of a Statistical Life for most exposed groups.
Alberini et al. (2006)	Canada	WTP with latency values	The farther away in time, the higher the reduction in WTP
Alberini, Kohlova and Scasny (2005)	Czech Republic	VSLthrogh contingent valuation survey	Mortality benefits of environmental policy
Scasny and Melichar	CR, Poland, Hungary	Meta analysis of valuation approaches	Taxonomy of methodologies

3. Other studies: industrial change

Look at different policy tools used

- The nature of ancillary benefits varies with the structure of the implemented climate policy.
- Compare different scenarios: coal washing, briqueting, change indoor heating, traffic policies, energy efficiency vs susbtitution in sources of energy, etc
- Lutter and Shogren (2001)

Further issues

- Thresholds and interactions between pollutants
- Latency and cumulative effects
- Ancillary costs, such as unemployment, externalities from fuels different from coal...
- Indoor pollution
- Uncertainty
- Equity (O'Neill et. al 2003)

Distributional Impacts

Poorer people may suffer more from air pollution because

- 1. They are more exposed
 - Proximity to roadways > more exposed since prices are depressed
 - Co-exposure to indoor pollution
 - "Dirtier" jobs
- 2. They have worse health

But little literature in LDC, usually match to ZIP code

				Main effect	Health	Socioeconomic		
Reference	Population	Study design	Place/years	pollutant(s)	outcome	variable	Level ^a /resolution	Key findings
HEI 2000	American Cancer Society (ACS) cohort (<i>n</i> = ~500,000); Harvard Six Cities Study (<i>n</i> = 8,111)	Prospective cohort	USA, 1982–1989 (ACS) 1975–1991 (6 cities)	PM _{2.5}	Mortality	Educational attainment (< high school, high school, > high school)	Individual/person	Greatest effects among least educated; monotonic dose response for all-caus mortality
⁹ ope et al. 2002	ACS (<i>n</i> = 500,000)	Prospective cohort	USA, 1982–1998	PM _{2.5}	Mortality	Educational attainment (< high school, high school, > high school)	Individual/person	Greatest effects among least educated; monotonic dose response for all-caus mortality
to and Thurston 1996	Residents of Cook County, Illinois	Time series	Chicago, IL, USA 1985–1990	PM ₁₀	Daily mortality	Race (black/white), sex	Individual/person	Greatest effects among black women, then white women, black men, and white men
Gouveia and Fletcher 2000	Residents of São Paulo, Brazil	Time series	Brazil, 1991–1993	PM ₁₀	Daily mortality	Composite index of socioeconomic conditions (from 1991 Census)	Group/district (58 in a city of 9.5 million)	Air pollution effects larger in districts of higher socioeconomic level
Samet et al. 2000	Residents of 20 U.S. cities	Time series pooled data	USA, 1987–1994	PM ₁₀ (O ₃ , CO, SO ₂ , NO ₂)	Daily mortality	Educational attainment, income, (percent poverty, percent nonwhite, and transportation habits; the last three only in HEI NMMAPS)	Group/county	No effect modification by any of the variables considered
Zanobetti and Schwartz 2000	Residents of Chicago, Detroit, Minneapolis–St. Paul, Pittsburgh	Time series pooled data	USA, 1986–1993	PM ₁₀	Daily mortality	Race, sex, educational attainment	Individual/person	Higher effect in women; race and educational attainment were weak modifiers
Cifuentes et al. 1999	Residents of Santiago, Chile	Time series	Chile, 1988–1996	PM _{2.5}	Daily mortality	Educational attainment (elementary, high school, university)	Individual/person	Greatest effects among least educated; monotonic dose response for all-caus mortality
Vojtyniak et al. 2001	Residents of four Polish cities: Cracow, Lodz, Poznan, Wroclaw	Time series	Poland, 1990–1996	Black smoke, NO ₂ , SO ₂	Daily mortality	Educational attainment (elementary or less, secondary, above secondary or university)	Individual/person	Greatest effects among least educated; monotonic dose response for all-caus mortality for black smoke, SO ₂
Gwynn and	Hospital admissions in	Time series	New York,	PM _{10,} acidity	Respiratory-	Non-Hispanic whites,	Individual/person	Higher effects among race

Gwynn and Thurston 2001	Hospital admissions in New York, New York	Time series	New York, 1988–1990	PM _{10,} acidity (H+),O ₃ , sulfate	Respiratory- cause hospital admissions	Non-Hispanic whites, all other races/ethnicities, insured and uninsured	Individual/person	Higher effects among races other than white and uninsured for O ₃ ; less marked differences for other pollutants
Zanobetti et al. 2000a	Hospital admissions in 10 U.S. cities	Time series meta- regression	U.S. cities, 1985–1994; time interval varies by city	PM ₁₀	Hospital admissions, respiratory and cardiovascular	Percent population living in poverty; percent nonwhite population	Group/person	No multiplicative-scale effect modification observed by socioeconomic factors
Zanobetti et al. 2000b	Medicare recipients in Cook County, Illinois	Time series	Cook County, IL, 1985–1994	PM ₁₀	Hospital admissions, respiratory and cardiovascular	Primary: race and sex; secondary: concurrent diagnosis/previous admission	Individual/person	No significant effect modification by sex or race; higher effects among those with respiratory infections/ asthma, previous admissions
Norris et al. 2000	Residents of Seattle, Washington < 18 years of age	Time series	Seattle, WA, 1995–1996	PM ₁₀ (CO, NO ₂ , SO ₂)	Asthma ED visits	High vs. low ED-use regions	Group/zip code	No effect modification by ED use rates; significant difference in absolute visits
Linn et al. 2000	Residents of South Coast Air Basin (California)	Time series	Los Angeles, Riverside,San Bernadino, Orange Counties,1992–1995		Hospital admissions, respiratory and cardiovascular	Sex, ethnicity (white, black, Hispanic, other)	Individual/person	Increased cardiovascular effects in blacks and whites relative to Hispanics and other
Tolbert et al. 2000	Children in Atlanta, Georgia (< 16 years)	Time series	Atlanta, GA, 1993–1995	PM ₁₀ , NO ₂ , O ₃	Asthma ED visits	Race, Medicaid status, sex	Individual/person	No effect modification due to race or Medicaid status
Zanobetti and Schwartz 2001	Medicare recipients in Cook County, Illinois	Time series	Cook County, IL, 1988–1994	PM ₁₀	Hospital admissions, respiratory and cardiovascular	Secondary: diabetic status	Individual/person	Higher cardiovascular hospital admission rates among diabetics vs. nondiabetics

Abbreviations: ED, emergency department; HEI, Health Effects Institute; NMMAPS, National Morbidity, Mortality, and Air Pollution Study; PM_{2.5}, particulate matter < 2.5 µm in aerodynamic diameter. aGroup vs. individual. Problems with measuring environmental equity

- Socio-economic conditions change, income at a single point in time is not capturing the cumulative effects on health.
- Child socio-economic circumstances have an impact for the entire lifetime's health.

(Integrated Assessment Models)

 Multi-sector economy with energy sector(s), inputoutput matrices of fuels and pollutants, dose response functions and health costs.

• Solve for the dynamic recursive growth process.

- Disadvantages
 - lack of technological detail
 - sensitivity of results to variation of key parameters (elasticity of substitution between fuels, etc.).

Integrated Assessment Models

AUTHORS	LOCATION	MODEL & CONTROLS	RESULTS
Dessus and O'Connor (2001)- 1st in LDCs	Santiago del Chile	GE model, elasticity of substitution between different types of energy sources and between energy and other inputs.	Including benefits, no welfare loss from 10% emission reduction by 2010 or carbon tax of \$75/tC, even with conservetive controls.
Bussolo and O'Connor (2001)	India	CGE	On conservative assumptions emissions could be reduced by somewhat more than 10 per cent from their 2010 baseline level without incurring net costs.
Complainville and Martins (1994)	Many developing countries	CO2, SOX and NOX multicountry, multi-sector, dynamic general equilibrium model (OECD GREEN)	
Aunan et al. (2003)	China	Three different approaches: •Bottom-up study in the capital of Shanxi province (Taiyuan), •a semi-bottom-up study in Shanxi province as a whole, •and a top-down study using a computable general equilibrium model (CGE) for China	Starts from a specific policy, Cleaner Production project.
Aunan et al. (2007)	China	CGE model, Nox ancillary benefits. Also models impact on agricultural yields	China may reduce its CO2- emissions by 17.5 per cent without suffering a welfare loss. Half of the benefit originates in the agricultural model.
Garbaccio and Jorgenson (2000)	China	Multi-sector Solow growth (dynamic recursive) – good description.	A policy which reduces carbon emissions by 5% every year from base case will reduce premature deaths by some 3.5 to 4.5%. With commonly used valuation methods, the health damage caused by air pollution in the first year is about 5% of GDP. A policy to modestly reduce carbon emissions would therefore reduce local health losses by some 0.2% of GDP annually.
Gielen, and Changhong (2001)	China, Shanghai	Linear programming MARKAL model for the Shanghai energy system. optimal set of policies for reduction of SO2. NOx and CO2 in Shanghai for the period of 2000– 2020	The results show that no-regret options are not so advantageous because Shanghai has improved its energy efficiency significantly in recent years.
Van Vuuren et al. (2003)	China	Simulation model IMAGE/TIMER, it does not optimise scenario results on the basis of perfect foresight, but instead, simulates year-to-year investments decisions based on a combination of bottom-up engineering information and specific rules about investment behaviour, fuel substitution and technology. SO2	Combining all options considered, it appears to be possible to reduce emissions compared to the baseline scenarios by 50%.

Bibliography

•

- Alberini, A. (1995). "Optimal Designs for Discrete Choice Contingent Valuation Surveys: Single-Bound, Double-Bound, and Bivariate Models." Journal of Environmental Economics and Management 28: 287-306.
- Alberini, A., M. Cropper, T.-T. Fu, A. Krupnick, J.-T. Liu, D. Shaw, and W. Harrington (1997), "Valuing Health Effects of Air Pollution in Developing Countries: The Case of Taiwan", Journal of Env. Economics and Management, 34, pp.107-126.
- Alberini, A. & Maureen Cropper & Alan Krupnick & Nathalie Simon, 2006. "Willingness to pay for mortality risk reductions: Does latency matter?," Journal of Risk and Uncertainty, Springer, vol. 32(3), pages 231-245, May.
- Aunan, K.; Fang, J.; Mestl, H.E.; O'Connor, D.; Seip, H.M.; Vennemo, H. and Zhai, F. (2003): "Co-benefits of CO2-reducing Policies in China a Matter of Scale?", International Journal of Global Environmental Issues, 3, 287-304.
- Aunan, K., T. Berntsen, D. O'Connor, T. Hindman Persson, H. Vennemo, F. Zhai(2007) "Benefits and costs to China of a climate policy", Environment and Development Economics, 12 (2007), pp. 471–497.
- Beghin, J., D. Roland-Holst, and D. van der Mensbrugghe (1994), "Trade and Pollution Linkages: Piecemeal Reform and Optimal Intervention", Technical Paper No. 99, OECD Development Centre, Paris, October.
- Bollen J, van der Zwaan B, Brink C and Eerens H 2009 Local air pollution and global climate change: a combined cost-benefit analysis Res. Energy Econ. 31 161–81.
- Bussolo, M., and D. O'Connor (2001), "Climate Policy in India: Comparing Costs with Ancillary Benefits in a Multi-Region CGE Framework", OECD Development Centre Technical Paper Series, Paris.
- Burtraw, Dallas, Alan Krupnick, and Anil Markandya (2000) "The ancillary benefits and costs of climate change mitigation: a conceptual framework", in *Ancillary Benefits and Costs of Greenhouse Gas Mitigation*, OECD.
- Calthrop, E. and D. Maddison (1996) "The dose–response function approach to modeling the health effects of air pollution", Energy Policy, 24 (7) (1996), pp. 599–607
- Cifuentes, L.A., J.J. Prieto, and J. Escobari (2001), "Valuing Mortality Risk Reduction at Present and Future Ages: Results from a Contingent Valuation Study in Chile", Santiago, mimeo.

Bibliography

•

- Foster, Andrew and Naresh Kumar (2011) "Health Effects of Air Quality Regulations in Delhi, India". Atmospheric Environment, Mar 1;45(9):1675-1683.
- Garbaccio, R.F. And M.S. Ho, D.W. Jorgenson (2000) "The health benefits of controlling carbon emissions in China, OECD (Ed.), Ancillary Benefits and Costs of Greenhouse Gas Mitigation. Paris (2000), pp. 343–376.
- Gielen, D. and C. Changhong (2001) "The CO2 emission reduction benefits of Chinese energy policies and environmental policies: a case study for Shanghai, period 1995–2020", Ecological Economics, 39 (2001), pp. 257–270.
- Haidong Kan, Bingheng Chen (2003) A case-crossover analysis of air pollution and daily mortality in Shanghai. Journal Of Occupational Health (2003)
- Han Xianglu and Luke P. Naeher (2006) A review of traffic-related air pollution exposure assessment studies in the developing world, Environment International, Volume 32, Issue 1, January 2006, Pages 106-120.
- Longo, Alberto, David Hoyos and Anil Markandya (2011) "Willingness to Pay for Ancillary Benefits of Climate Change Mitigation", Environmental and Resource Economics Volume 51, Number 1, 119-140, DOI: 10.1007/s10640-011-9491-9
- Löschel, Andreas and Dirk T.G. Rübbelke, (2009) "Impure public goods and technological interdependencies", Journal of Economic Studies, Vol. 36 Iss: 6, pp.596 615.
- O'Neill, et al. (2003) "Health, wealth, and air pollution: advancing theory and methods." Environ Health Perspect. 2003 December; 111(16): 1861–1870.
- Ostblom G and Samakovlis E 2007 Linking health and productivity impacts to climate policy costs: a general equilibrium analysis, *Clim. Policy* **7** 379–91.
- Ostro, B. (2004) "Outdoor air pollution: assessing environmental burden of disease at national and local level ", WHO.
- Pittel, K. and Dirk T.G. Rübbelke (2008) Climate policy and ancillary benefits: A survey and integration into the modelling of international negotiations on climate change, Ecological Econ, Volume 68, Issues 1–2, 1 December 2008, Pages 210-220,

Bibliography

- Renjie Chen, Guowei Pan, Haidong Kan, Jianguo Tan, Weimin Song, Zhenyu Wu, Xiaohui Xu, Qun Xu, Cheng Jiang, Bingheng Chen (2003) Science of the Total Environment (2003) Volume: 408, Issue: 10, B.V., Pages: 863-867
- Van Vuuren, D.P., Z. Fengqi, B. de Vries, J. Kejun, C. Graveland, L. Yun (2003) "Energy and emission scenarios for China in the 21st century exploration of baseline development and mitigation options", Energy Policy, 31 (2003), pp. 369–387.
- Wang, X., and K.R. Smith (1999), Near-term Health Benefits of Greenhouse Gas Reductions: A Proposed Assessment Method and Application in Two Energy Sectors of China, WHO/SDE/PHE/99.01, March.
- Xu, X., J. Gao, D.W. Dockery, and Y. Chen (1994), "Air Pollution and Daily Mortality in Residential Areas of Beijing, China", Archives of Environmental Health, Vol.49, No.4, July/August, pp.216-222.
- Yanjun Ma, Renjie Chen, Guowei Pan, Xiaohui Xu, Weimin Song, Bingheng Chen, Haidong Kan (2011) "Fine particulate air pollution and daily mortality in Shenyang, China". Science of the Total Environment, Volume: 409, Issue: 13, Publisher: Elsevier B.V., Pages: 2473-2477
- Zhaoyi Xu, Dogian Yu, Libin Jing and Xiping Xu (2000) Air Pollution and Daily Mortality in Shenyang, China, Archives of Environmental Health: An International Journal, Volume 55, Issue 2.

Thank you!